
www.manaraa.com



www.manaraa.com

Mechanical Vibrations



www.manaraa.com



www.manaraa.com

Tony L. Schmitz l K. Scott Smith

Mechanical Vibrations

Modeling and Measurement



www.manaraa.com

Tony L. Schmitz
Department of Mechanical Engineering
and Engineering Science
University of North Carolina at Charlotte
Charlotte, NC, USA
tony.schmitz@uncc.edu

K. Scott Smith
Department of Mechanical Engineering
and Engineering Science
University of North Carolina at Charlotte
Charlotte, NC, USA
kssmith@uncc.edu

Please note that additional material for this book can be downloaded from
http://extras.springer.com

ISBN 978-1-4614-0459-0 e-ISBN 978-1-4614-0460-6
DOI 10.1007/978-1-4614-0460-6
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011934974

# Springer Science+Business Media, LLC 2012
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer ScienceþBusiness Media (www.springer.com)



www.manaraa.com

To our children, Jake, BK, Kellye, and Kyle.



www.manaraa.com



www.manaraa.com

Preface

In this textbook, we describe essential concepts in the vibration analysis of

mechanical systems. The book incorporates the required mathematics, experimen-

tal techniques, fundamentals of modal analysis, and beam theory into a unified

framework and is written to be accessible to undergraduate students, researchers,

and practicing engineers alike. We based the book on undergraduate courses in

mechanical vibrations that we have previously offered and developed the text to be

applied in a traditional 15-week course format. It is appropriate for undergraduate

engineering students who have completed the basic courses in mathematics

(through differential equations) and physics and the introductory mechanical engi-

neering courses including statics, dynamics, and mechanics of materials.

We organized the book into nine chapters. The chapter topics are summa-

rized here.

l Chapter 1 – We introduce the types of mechanical vibrations, damping, and

periodic motion.
l Chapter 2 – We explore topics in single degree of freedom free vibration,

including the equation of motion, the damped harmonic oscillator, and unstable

behavior.
l Chapter 3 – We introduce single degree of freedom forced vibration and discuss

the frequency response function, rotating unbalance, base motion, and the

impulse response.
l Chapter 4 – We extend the Chap. 2 analysis to consider two degree of freedom

free vibration. This includes the eigensolution for the equations of motion and

modal analysis.
l Chapter 5 – We extend the Chap. 3 analysis to consider two degree of freedom

forced vibration. We describe complex matrix inversion, modal analysis, and the

dynamic absorber.
l Chapter 6 – In this chapter we analyze model development by modal analysis.

This incorporates the peak picking approach for identifying modal parameters

from a system frequency response measurement and mode shape measurement.
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l Chapter 7 – We describe frequency response function measurement techniques

in this chapter. Impact testing is highlighted.
l Chapter 8 – The topic of this chapter is continuous beam modeling. Closed-form

frequency response function expressions are developed for transverse beam

vibration, torsion vibration, and axial vibration of beams.
l Chapter 9 – This chapter introduces the concept of receptance coupling, where

frequency response functions (receptances) are coupled to predict assembly

dynamics.

To demonstrate and unify the various concepts, the Beam Experimental Platform

(BEP) is used throughout the text. Engineering drawings for the BEP are included

in Appendix A so that instructors can provide their own demonstrations in the

classroom. Additionally, MATLAB
® programming solutions are integrated into the

text through many numerical examples.

Special features of the book include: (1) MATLAB
®

MOJO code examples; (2) By
the Numbers numerical solutions; (3) chapter problems and solutions, including

MATLAB
® code; (4) non-mathematical In a Nutshell explanations that summarize

selected concepts in layman’s terms; and (5) discussions and numerical examples of

model uncertainty.

We conclude by acknowledging the many contributors to this text. These

naturally include our instructors, colleagues, collaborators, and students. Among

these, we’d like to particularly recognize the contributions of J. Tlusty, M. Davies,

T. Burns, J. Pratt, and H.S. Kim.We also thank the reviewers of this book, including

D. Blood, A. Burdge, M. Mitchell, and M. Pope, for their helpful suggestions and

proofreading.

Charlotte, NC Tony L. Schmitz

Charlotte, NC K. Scott Smith

viii Preface



www.manaraa.com

Contents

1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Mechanical Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Types of Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Free Vibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Forced Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.3 Self-Excited Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Damping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Periodic Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Single Degree of Freedom Free Vibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1 Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Energy-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Additional Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.1 Equivalent Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.2 Torsional Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.3 Nonlinear Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Damped Harmonic Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4.1 Viscous Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4.2 Coulomb Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4.3 Solid Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4.4 Damped System Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4.5 Underdamped System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4.6 Damping Estimate from Free Vibration Response . . . . . . . . . 60

2.4.7 Damping Estimate Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.5 Unstable Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.5.1 Flutter Instability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.5.2 Divergent Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

ix



www.manaraa.com

2.6 Free Vibration Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3 Single Degree of Freedom Forced Vibration . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1 Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2 Frequency Response Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3 Evaluating the Frequency Response Function. . . . . . . . . . . . . . . . . . . . . 89

3.4 Defining a Model from a Frequency Response

Function Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.5 Rotating Unbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.6 Base Motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.7 Impulse Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4 Two Degree of Freedom Free Vibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.1 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.2 Eigensolution for the Equations of Motion. . . . . . . . . . . . . . . . . . . . . . . . 129

4.3 Time-Domain Solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.4 Modal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5 Two Degree of Freedom Forced Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.1 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.2 Complex Matrix Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.3 Modal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.4 Dynamic Absorber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6 Model Development by Modal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.1 The Backward Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.2 Peak Picking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.2.1 Single Degree of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.2.2 Two Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.3 Building the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.4 Peak Picking for Multiple Degrees of Freedom . . . . . . . . . . . . . . . . . . . 214

6.5 Mode Shape Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

6.6 Shortcut Method for Determining Mass, Stiffness,

and Damping Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

x Contents



www.manaraa.com

6.6.1 Linearized Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

6.6.2 Automobile Suspension Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

7 Measurement Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

7.1 Frequency Response Function Measurement. . . . . . . . . . . . . . . . . . . . . . 249

7.2 Force Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

7.3 Vibration Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

7.3.1 Capacitance Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

7.3.2 Laser Vibrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

7.3.3 Accelerometer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

7.4 Impact Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

7.5 Modal Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

8 Continuous Beam Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

8.1 Beam Bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

8.2 Transverse Vibration Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . 284

8.3 Frequency Response Function for Transverse Vibration . . . . . . . . 285

8.3.1 Fixed-Free Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

8.3.2 Free-Free Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

8.4 Solid Damping in Beam Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

8.5 Rotation Frequency Response Functions. . . . . . . . . . . . . . . . . . . . . . . . . 301

8.6 Transverse Vibration FRF Measurement Comparisons . . . . . . . . . . 304

8.6.1 Fixed-Free Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

8.6.2 Free-Free Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

8.6.3 Natural Frequency Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 307

8.7 Torsion Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

8.8 Axial Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

8.9 Timoshenko Beam Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

9 Receptance Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

9.2 Two-Component Rigid Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

9.3 Two-Component Flexible Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

9.4 Two-Component Flexible-Damped Coupling . . . . . . . . . . . . . . . . . . . . . 334

9.5 Comparison of Assembly Modeling Techniques . . . . . . . . . . . . . . . . . . 336

9.5.1 Modal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

9.5.2 Complex Matrix Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

9.5.3 Receptance Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

Contents xi



www.manaraa.com

9.6 Advanced Receptance Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

9.7 Assembly Receptance Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

9.7.1 Free-Free Beam Coupled to Rigid Support. . . . . . . . . . . . . . . . 349

9.7.2 Free-Free Beam Coupled to Fixed-Free Beam . . . . . . . . . . . . 355

9.7.3 Comparison Between Model and BEP Measurement . . . . . 360

Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

Appendix B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

xii Contents



www.manaraa.com

Chapter 1

Introduction

The last thing one discovers in composing a work is what to
put first.

– Blaise Pascal

1.1 Mechanical Vibrations

The subject ofmechanical vibrations dealswith the oscillating response of elastic bodies

to disturbances, such as an external force or other perturbation of the system from its

equilibriumposition.All bodies that possessmass and havefinite stiffness are capable of

vibrations. While some vibrations are desirable, such as the “silent ring” mode for cell

phones or the simulation of belly-shaking laughter by the Tickle Me Elmo doll,1 it is

often the engineer’s objective to reduce or eliminate vibrations. Examples include:

• automobile vibrations, which can lead to passenger discomfort

• building vibrations during earthquakes

• bridge vibrations due to high winds

• cutting tool vibrations during machining operations.

IN A NUTSHELL Vibratiorn can be thought of as a periodic

exchange of potential and kinetic energy (stored energy and the energy

of motion). All mechanical systems that vibrate have mass and

stiffness. The mass is the part of the system that relates force and

acceleration. When the mass is in motion, the system has kinetic

energy. The stiffness is the part of the system that relates force and displacement.When

the stiffness element is displaced, the system has potential energy. All real physical

systems also possess damping, which is the part of the system that dissipates energy.

Dampingmay be caused by friction betweenmoving elements, flowof a fluid through a

1Both of these “desirable” vibrations are a product of the same phenomenon. See Sect. 3.5.

T.L. Schmitz and K.S. Smith, Mechanical Vibrations: Modeling and Measurement,
DOI 10.1007/978-1-4614-0460-6_1, # Springer Science+Business Media, LLC 2012
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restriction, or other means, but whatever the source, damping converts kinetic and

potential energy into heat, which is lost. During vibration, energy is periodically

transformed back and forth between kinetic and potential until all the energy is lost

through damping.

1.2 Types of Vibrations

Mechanical vibrations can be classified into three general categories. These are:

free vibration, forced vibration, and self-excited vibration (or flutter). In the fol-

lowing paragraphs, the three vibration types are described in more detail.

1.2.1 Free Vibration

Free vibration is encountered when a body is disturbed from its equilibrium position

and a corresponding vibration occurs. However, there is no long-term external force

acting on the system after the initial disturbance. When describing the motion

of a vibrating body that can be modeled as a simple spring-mass-damper system,

for example, free vibration results when some initial conditions are applied, such as

an initial displacement or velocity, to obtain the solution to its homogeneous

second-order differential equation of motion (Kreyszig 1983).

Free vibration is observed as an exponentially decaying, periodic response to the

initial conditions as shown in Fig. 1.1. This periodic motion occurs at the system’s

(damped) natural frequency. We will discuss these concepts in more detail in

Sect. 2.4. A good example of free vibration is the motion and resulting sound of a

0 0.02 0.04 0.06 0.08 0.1
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−0.5

0

0.5

1

t

x(
t)

Fig. 1.1 Example of free

vibration. The magnitude of

the oscillating motion decays

over time and the periodic

vibration occurs at the natural

frequency
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guitar string after it is plucked. The pitch of the sound (the natural frequency of

vibration) depends on the string’s length and diameter; a shorter string produces a

higher natural frequency for a selected diameter, while a larger diameter string

produces a lower natural frequency for a given length. The pitch also depends on

the tension in the string; tighter strings produce higher frequencies.

1.2.2 Forced Vibration

In this case, a continuing periodic excitation is applied to the system. After some

initial transients (i.e., the homogeneous solution to the differential equation), the

system reaches steady state behavior (i.e., the particular solution). At steady state,

the system response resembles the forcing function and the vibrating frequency

matches the forcing frequency.

A special situation arises when the forcing frequency is equal to the system’s

natural frequency. This results in the largest vibration magnitude (for the selected

force magnitude) and is referred to as resonance. Unlike free vibration, where the
response of the system to the initial conditions is typically plotted as a function of

time, forced vibration is most often described as a function of the forcing frequency.

See Fig. 1.2, where the peak corresponds to resonance.

Rotating unbalance represents a common type of forced vibration. Consider a

wheel/tire assembly on an automobile, for example. If the mass of the wheel/tire

is not distributed evenly around the circumference, then a once-per-revolution

forcing function is produced by the unbalanced mass. This periodic forcing function

(whose frequency depends on the rotating speed of the wheel/tire) can serve to

excite one of the car frame or drive train natural frequencies and can lead to

significant vibration magnitude. For this reason, it is common practice to balance

wheel/tire assemblies before installing them on a vehicle. We will discuss rotating

unbalance more in Sect. 3.5.
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Fig. 1.2 Forced vibration is

often described in the

frequency domain rather than

the time domain. Resonance

is identified where the forcing

frequency is equal to the

natural frequency
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IN A NUTSHELL Almost all forced vibrations are man-made.

The vibration persists as long as the excitation is present. When the

excitation stops, the vibration becomes a free vibration and dies

away due to damping. Many readers will be intuitively familiar with

the frequency-dependent nature of forced vibrations and the concept

of resonance. If the automobile with the unbalanced tire is driven very slowly,

then vibration is not felt. As the car speeds up, the amplitude of the vibration

increases, but if the driver continues to increase the speed, then after a certain speed,

the vibration amplitude diminishes. The largest vibration amplitude occurs at

resonance. As another example, shower singers may have noticed that there is a

particular note that is very loud when singing in a shower stall. That frequency

corresponds to a resonance of the enclosure.

1.2.3 Self-Excited Vibration

Self-excited vibration, or flutter, occurs when a steady input force is modulated into

vibration near the system’s natural frequency. An intuitive example is whistling.

Here, the steady blowing of air across your lips produces sound (vibration) at a

frequency which depends on the tension in your lips (which governs the natural

frequency). The diaphragm does not move at the high frequency of the sound, but

rather the steady push of air is converted into a vibration of the “structure.”

Similarly, the steady pull of the bow across a violin string causes sound near the

string’s natural frequency (which, like the guitar example, depends on the string’s

length, diameter, and tension).

IN A NUTSHELL The rosin on a violin bow has an interesting

characteristic – the coefficient of friction between the bow and the

string changes depending on the relative velocity between them.

When the string and the bow move in the same direction, the relative

velocity is low and the coefficient of friction is high. Energy is

put into the string motion during this phase. When the string and the bow move in

opposite directions, the relative velocity is high and the coefficient of friction

is low. Less energy is lost here than was input during the first part of the motion,

and the difference is enough to sustain the vibration over the damping losses.

This behavior differentiates self-excited vibrations from both free and forced

vibrations. Unlike free vibration, a long-term external force is present. Contrary to

forced vibration, the excitation in a self-excited vibration is steady rather than

periodic and the vibration occurs near the natural frequency. An example time-

domain response for self-excited vibration is provided in Fig. 1.3.

4 1 Introduction
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The term flutter is based on the common presence of self-excited vibrations in

aeroelastic applications. It occurs due to the air (fluid) flow over wings during flight.

This steady flow is modulated into vibration near the wings’ natural frequency. This

vibration can be minor (a small magnitude vibration manifested as in-flight “buzz”)

or can be catastrophic in extreme cases. The phenomenon is not limited to aircraft

structures, however. A well-known example is the destruction of the Tacoma

Narrows Bridge on November 7, 1940, in Washington state (http://en.wikipedia.

org/wiki/Tacoma_Narrows_Bridge_(1940)).

Another common example of self-excited vibration is chatter in machining

processes. Chatter in milling occurs when the steady forced excitation caused by

the teeth impacting the workpiece (and removingmaterial in the form of small chips)

is modulated into vibration near the system’s natural frequency. This modulation

can occur due to the inherent feedback mechanism which is present in milling. The

feedback is the result of the dependence of the thickness of the chip being removed

on not only the tool’s current vibration state but also on the vibration state of the

previous tooth when removing material at the same angular location. Because the

cutting force is proportional to the chip thickness, the variable chip thickness causes

variation in the cutting force. This force variation, in turn, also affects the

corresponding tool vibration. This phenomenon is referred to as “regeneration of

waviness” and results in a time-delayed differential equation of motion for milling.

If chatter occurs, the resulting large forces and vibrations can lead to poor surface

finish and damage to the tool, workpiece, and/or spindle (Schmitz and Smith 2009).

IN A NUTSHELL The three classes of vibration are distinguished

not by the physical characteristics of the vibrating components, but

rather by the nature of the excitation and the character of the

resulting motion. Vibration problems have different solutions

depending on the class. For example, free vibration problems are

often solved by modifying the initial conditions or by increasing the damping so

that the transient vibration attenuates more quickly. Forced vibration problems are
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Fig. 1.3 The magnitude of

self-excited vibration can

increase over time until

limited in some way

(typically by a nonlinear

effect). The oscillating

frequency is close to the

system’s natural frequency
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often solved by reducing the external excitation or changing the system so that the

excitation is not close to resonance. Self-excited vibration problems are often

solved by disturbing or eliminating the self-excitation mechanism. Table 1.1

summarizes the three vibration types.

1.3 Damping

All vibrating systems are subject to damping, or energy dissipation due to fluid

motion, friction at contacting surfaces, or othermechanisms. This causes the response

to decay over time for free vibration. In forced vibration, the input force must

overcome the damping in order to sustain the constant magnitude response. We will

discuss types of damping and their mathematical models in more detail in Sect. 2.4.

Table 1.1 Vibration classification

Vibration

class Excitation

Frequency of

resulting motion Characteristic

Free

vibration

Initial conditions (Damped) natural

frequency
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Forced
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periodic

external source
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external source
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1.4 Modeling

As noted previously, it is often the responsibility of the engineer to model vibrating

systems to determine their response to arbitrary inputs or decide how to modify a

structure to mitigate the effects of a particular forcing function. Regardless, each

system requires a certain number of independent coordinates to adequately describe

its motion. These coordinates are the degrees of freedom.
For a particle in three-dimensional space, three coordinates are necessary – one

for each of the three translation directions. A rigid body, on the other hand, requires

six degrees of freedom to describe its motion: three translations and three rotations.

See Fig. 1.4.

For an elastic body, or one that possesses mass and has finite stiffness, an infinite

number of coordinates is required to fully describe its motion. To demonstrate this,

let’s imagine a ruler overhung from the edge of a table and clamped flat; see

Fig. 1.5. We can consider each tick mark as a point on the beam. Naturally, the

motion of each of these points differs as a function of time in response to the end of

the ruler being displaced and released. Therefore, we require a coordinate at each of

the tick marks. If we switched that ruler with another ruler of identical geometry

and overhang length, but with twice as many tick marks, we could repeat the

experiment and see that a coordinate was again required at each tick mark. At the

x 

y a b

z 

x 

y 

z 
θz

θy

θx

Fig. 1.4 (a) Three degrees of freedom for a particle and (b) six degrees of freedom for a rigid

body

Clamping
force

Ruler 

Table 

Fig. 1.5 A ruler clamped against the edge of a table
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limit, we could assign an infinite number of coordinates to an infinite number of tick

marks. An infinite number of coordinates, however, means we would have an

infinite number of degrees of freedom. We could make the same argument about

any other structure we might consider.

This poses a problem for our modeling efforts. Must all our models possess an

infinite number of degrees of freedom? Luckily, it is often acceptable to use only a

few degrees of freedom when describing a body’s vibration behavior. For the

cantilever beam (clamped ruler) shown in Fig. 1.5, we might be interested in only

the lowest, or fundamental, natural frequency. The shape of the beam as it vibrates

at this natural frequency, referred to as a mode shape, is shown in Fig. 1.6. If we are

only interested in motion that occurs in this single mode shape (and corresponding

natural frequency), we could pick a single point on the beam (at its end, for

example) and describe the motion using this single degree of freedom. We could

then approximate the continuous beam with a (discrete) single degree of freedom

model as shown in Fig. 1.7. We will discuss how to determine the parameters for

this spring-mass-damper model in Sects. 3.4 and 6.2.

1.5 Periodic Motion

To this point, we have mentioned that vibrations are oscillatory in nature. Let’s now

add some definitions to this discussion. A signal that repeats at regular intervals in

time is referred to as periodic. An example is shown in Fig. 1.8. The simplest form

of periodic motion is harmonic motion. Common examples of harmonic motion are

the sine and cosine functions.

Mass

Spring Damper 

End point
deflection 

Fig. 1.7 Single degree of

freedom spring-mass-damper

model used to approximate

the cantilever beam behavior

Fig. 1.6 Fundamental mode

shape for a cantilever beam
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Figure 1.9 shows the sine function xðtÞ ¼ A sin otð Þ, where A is the magnitude

with the units of x (if x is a displacement, then units of millimeters ormicrometers may

be appropriate, for example) and o is the circular frequency expressed in radians/

second (or rad/s). As shown in the figure, the function repeats every t seconds and we
can write that x tþ tð Þ ¼ xðtÞ. The variable t is referred to as the time period (or just
the period) of the signal x(t). It is related to o (rad/s) as shown in Eq. 1.1. There is

+A

−A

t

t 

x(t) 

Fig. 1.9 The sine function is an example of harmonic motion
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x

Fig. 1.8 Periodic motion example, x(t). The signal repeats over an interval of 1 s. Three full

periods are shown
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really no mystery to this relationship. It is simply based on two facts: (1) there are

2p rad per cycle of vibration; and (2) t gives the number of seconds per cycle.

t ¼ 2p
o

(1.1)

IN A NUTSHELL Many readers may be more familiar with

expressing vibration frequencies in cycles/second, or Hertz (Hz).

The vibration motion repeats each cycle, or whenever the sine or

cosine argument changes by 2p. For that reason, there are 2p radians

per cycle. We will use the Greek letter o to represent a vibration

frequency in radians/second and the letter f to indicate a vibration frequency in

cycles/second. The conversion between the two is provided in Eq. 1.4.

The reason we refer to o as the circular frequency is that we can represent x(t)
as a vector rotating in the complex (real–imaginary) plane with the frequency o.
The Argand diagram2 in Fig. 1.10 shows that the sine function is the projection of

the counterclockwise rotating vector with a length (magnitude) A on the horizontal

(or real) axis. The angle of the vector at any instant is the product ot.

2
=
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4 

2
=

wt 

wt 

wt 

w 

p

p

x 

+A−A

Fig. 1.10 Argand diagram

for the function xðtÞ ¼
A sin otð Þ

2 A plot of complex numbers as points in the complex plane is referred to as an Argand diagram

(Weisstein 2010); we will use this description throughout the text.
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The French physicist and mathematician Jean Baptiste Joseph Fourier made an

important observation about periodic functions. He found that a periodic function

x(t) can be represented by an infinite sum of sine and cosine terms as shown in

Eq. 1.2, where o2 ¼ 2o1, o3 ¼ 3o1, etc. This is referred to as the Fourier series
and the coefficients a0, a1, b1, a2, b2, etc., are called the Fourier coefficients

(Kreyszig 1983).

xðtÞ ¼ a0 þ a1 cos o1tð Þ þ b1 sin o1tð Þ þ a2 cos o2tð Þ þ b2 sin o2tð Þ
þ a3 cos o3tð Þ þ b3 sin o3tð Þ þ � � � ð1:2Þ

Let’s take another look at Fig. 1.8. This signal is actually the sum of two sine

functions, xðtÞ ¼ x1 þ x2 ¼ sin 2ptð Þ þ 0:5 sin 2 � 2ptð Þ. All three signals, x1, x2,
and x(t), are shown in Fig. 1.11. Comparing this function to Eq. 1.2, we see that

o1 ¼ 2p rad/s, b1 ¼ 1, b2 ¼ 0.5, and the remaining coefficients are zero. Also,

from the figure we see that the period of x(t) is 1 s. Let’s use MATLAB®3 to see how

we can define and plot this function. See MATLAB® MOJO 1.1.
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Fig. 1.11 The periodic motion in Fig. 1.8 is the sum of two sine functions, x1 and x2

3MATLAB® and Simulink® are registered trademarks of The MathWorks, Inc. For MATLAB®

and Simulink® product information, please contact: The MathWorks, Inc., 3 Apple Hill

Drive, Natick, MA, 01760–2098 USA, Tel: (508) 647–7000, Fax: (508) 647–7001, E-mail:

info@mathworks.com, Web: www.mathworks.com.
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% matlab_mojo_1_1.m 

clc 
clear all 
close all 

% define variables 
t = 0:0.001:3;              % s 
omega1 = 2*pi;              % rad/s 
omega2 = 2*omega1;          % rad/s 
b1 = 1; 
b2 = 0.5; 

% define functions 
x1 = b1*sin(omega1*t); 
x2 = b2*sin(omega2*t); 
x = x1 + x2; 

figure(1) 
plot(t, x1, 'k:', t, x2, 'k--', t, x, 'k-') 
set(gca,'FontSize', 14) 
xlabel('t (s)') 
ylabel('x') 
legend('x_1', 'x_2', 'x') 

MATLAB  MOJO 1.1
®

Next, consider the square wave shown in Fig. 1.12. We see that this function is

also periodic with a period of 1 s. Can it be represented using Eq. 1.2? The answer

is yes – its Fourier series is the sum of the odd sine harmonics4: xðtÞ ¼ b1 sin o1tð Þþ
b3 sin o3tð Þ þ � � � . This makes sense when we observe that the square wave is an

odd function, which means that xðtÞ ¼ �x �tð Þ. In other words, the function does

not simply mirror about the t ¼ 0 point; it must also be inverted. Based on the

period of 1 s and using Eq. 1.1, we can find that o1 ¼ 2p
t ¼ 2p

1
¼ 2p rad/s. Further-

more, the Fourier coefficients are given by: bn ¼ 4
np , where n represents the odd

integers. These odd integers can be represented by the expression n ¼ 2k � 1,

where k ¼ 1, 2, 3, . . . .
The top panel of Fig. 1.13 shows the square wave and Fourier series approxima-

tion using the first three terms (k ¼ 1, 2, and 3, so n ¼ 1, 3, and 5). As with any

Fourier series, increasing the number of terms tends to increase its ability to

reproduce the signal in question. The bottom panel of Fig. 1.13 shows the result

for 20 terms. In this case, the square wave is reproduced quite accurately. However,

if we look closely, we see oscillations near the discontinuities in the piecewise

continuous square wave. This reflects the inherent challenge in representing a

discontinuous function by a finite series of continuous sine and cosine functions

and is referred to as Gibbs’ phenomenon (http://en.wikipedia.org/wiki/

Gibbs_phenomenon). Figure 1.13 was produced using the m-file provided in

MATLAB® MOJO 1.2.

4 “Harmonics” is used to indicate the terms in the Fourier series.
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Fig. 1.13 Square wave and Fourier series approximations for (top) three terms and (bottom)
20 terms
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Fig. 1.12 Square wave for t � 0
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% matlab_mojo_1_2.m

clc
clear all
close all

% define variables
t = 0:0.001:3;              % s
omega1 = 2*pi;              % rad/s

% define square wave as a piecewise function
for cnt = 1:length(t)

if t(cnt) < 0.5
x_ref(cnt) = 1;

elseif t(cnt) >= 0.5 & t(cnt) < 1
x_ref(cnt) = -1;

elseif t(cnt) >= 1 & t(cnt) < 1.5
x_ref(cnt) = 1;

elseif t(cnt) >= 1.5 & t(cnt) < 2
x_ref(cnt) = -1;

elseif t(cnt) >= 2 & t(cnt) < 2.5
x_ref(cnt) = 1;

elseif t(cnt) >= 2.5 & t(cnt) < 3
x_ref(cnt) = -1;

elseif t(cnt) >= 3
x_ref(cnt) = 1;

end
end

% define square wave using its Fourier series
terms = 3;
x = 0;

for cnt = 1:terms
b = 4/((2*cnt - 1)*pi);
omega = (2*cnt - 1)*omega1;
x = x + b*sin(omega*t);

end

figure(1)
hold on
subplot(211)
plot(t, x_ref, 'k', t, x, 'k')
set(gca,'FontSize', 14)
ylabel('x')
axis([0 3 -1.25 1.25])

% define square wave using its Fourier series
terms = 20;
x = 0;

for cnt = 1:terms
b = 4/((2*cnt - 1)*pi);
omega = (2*cnt - 1)*omega1;
x = x + b*sin(omega*t);

end

subplot(212)
plot(t, x_ref, 'k', t, x, 'k')
set(gca,'FontSize', 14)
xlabel('t (s)')
ylabel('x')
axis([0 3 -1.25 1.25])

MATLAB  MOJO 1.1
®
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IN A NUTSHELL Fourier’s genius was to recognize that any

time-varying signal can be represented as a sum of sine and cosine

functions of different frequencies and amplitudes. This means that

if we determine how to treat these sine and cosine terms, then we can

extend the analysis to any time-varying signal. This will be very

useful as we proceed with our study of mechanical vibrations.

Returning to our sine wave in Figs. 1.9 and 1.10, we see in Fig. 1.14 that the path

of the rotating vector is repeated every 2p rad in the Argand diagram. Because the

vector angle at any instant in time is ot rad and one full cycle of vibration (i.e., one
rotation of the vector) takes t seconds, we can write 2p ¼ ot. This equation

can be rearranged to give Eq. 1.1, or we can solve for the circular frequency.

o ¼ 2p
t

rad=s: (1.3)

Alternately, we can define the frequency in cycles/s, or Hertz (Hz). By con-

vention in this text, we will use the frequency variable f when applying units of Hz

and o when using rad/s. Because there are 2p rad per cycle of vibration, the

conversion from o to f is:

f ¼ o
2p

: (1.4)

w
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wt=2p
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+A−A
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Fig. 1.14 Argand diagram

showing the derivation of

Eq. 1.3
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Combining Eqs. 1.3 and 1.4, we can relate the frequency in Hz directly to the

vibration period in seconds.

f ¼ 1

t
: (1.5)

If xðtÞ ¼ A sin otð Þ in Fig. 1.14 represents position, what can we say about the

corresponding velocity, v(t), and acceleration, a(t)? For velocity, we calculate

the first time derivative of position to obtain:

vðtÞ ¼ dx

dt
¼ oA cos otð Þ: (1.6)

Acceleration is the time derivative of velocity (or second derivative of position).

We can therefore write acceleration as:

aðtÞ ¼ dv

dt
¼ �o2A sin otð Þ: (1.7)

Using the Argand diagrams in Fig. 1.15a–c, we can see that velocity leads

position by p
2
rad (90�) and acceleration leads position by p rad (180�). Although

all three vectors are rotating at the circular frequency o, they have different phase
values. That is, they reach their maximum values at different instants in time. This

is demonstrated in Fig. 1.16, where the three vectors are shown together for an

arbitrary instant in time. We can see from this figure that position and acceleration

always point in opposite directions. The position reaches its maximum at the

moment that the acceleration reaches its minimum. Therefore, with proper scaling
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Fig. 1.15 Argand diagram showing (a) position, (b) velocity, and (c) acceleration
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the two vectors could be summed to zero for all time, t. Using xðtÞ ¼ A sin otð Þ and
Eq. 1.7, we see that the required scaling factor is � o2. Rewriting Eq. 1.7, we have:

€x ¼ d2x

dt2
¼ �o2A sin otð Þ ¼ o2A sin otþ pð Þ (1.8)

where the second equality emphasizes the p rad phase shift between acceleration

and position. Combining Eq. 1.8 and xðtÞ ¼ A sin otð Þ with the � o2 scaling factor,

we can write:

€xþ o2x ¼ 0 or (1.9)

d2x

dt2
þ o2x ¼ 0: (1.10)

Equation 1.10 is referred to as the differential equation of harmonic motion. We

will revisit this equation in Sect. 2.1.

As we mentioned previously, the horizontal projection axis we used for our

Argand diagram is the real axis. The vertical axis is the imaginary axis. These
names do not identify the “existence” of the axes. Rather, given that we can describe

an arbitrary vibration as a sum of cosine and sine components, the real part is

the cosine component and the imaginary part is the sine component of the signal.

We can therefore represent a unit magnitude vector in the complex plane as xðtÞ ¼
cos otð Þ þ i sin otð Þ, where i is the imaginary variable and i ¼ ffiffiffiffiffiffiffi�1

p
. The projection

of this unit vector on the real and imaginary axes is demonstrated in Fig. 1.17.

IN A NUTSHELL The idea of a real and imaginary axis leads to a

mathematical convenience as discussed here. It is sometimes

difficult for students to see the reason why this notation would be

useful, but it eliminates many trigonometric manipulations that

would otherwise be required. Bear with us for a little while and trust

that this will be important (and useful) as we proceed.

x 

x

w2A

A

xw wA

wt

Fig. 1.16 Argand diagram

showing position, velocity,

and acceleration vectors

together
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Exponential notation is often used to describe vectors in the complex plane.

In this case, we write the unit vector as xðtÞ ¼ eiot ¼ cos otð Þ þ i sin otð Þ. This is
referred to as an Euler’s formula. We can show it is true using three Maclaurin

series:5

1. ey ¼ 1þ yþ y2

2! þ y3

3! þ y4

4! þ � � �
2. cosðyÞ ¼ 1� y2

2! þ y4

4! � y6

6! þ y8

8! � � � � Note that cosine is an even function, where

xðtÞ ¼ x �tð Þ, so we use the even harmonics in its series expansion.

3. sinðyÞ ¼ y� y3

3! þ y5

5! � y7

7! þ y9

9! � � � � :
If we equate y in these series with iot, then we find that y2 ¼ i2 otð Þ2 ¼ � otð Þ2,

y3 ¼ �i otð Þ3, y4 ¼ otð Þ4, y5 ¼ i otð Þ5, and so on. Substituting into the individual

series, we have:

1. eiot ¼ 1þ iot� otð Þ2
2! � i otð Þ3

3! þ otð Þ4
4! þ � � �

2. cos iotð Þ ¼ 1� otð Þ2
2! þ otð Þ4

4! � otð Þ6
6! þ otð Þ8

8! � � � �
3. sin iotð Þ ¼ ot� otð Þ3

3! þ otð Þ5
5! � otð Þ7

7! þ otð Þ9
9! � � � � .

By inspection, we see that the sum cos otð Þ þ i sin otð Þ is equal to eiot. The
conclusion is that we can express harmonic motion using exponential notation and

still satisfy the differential equation of harmonic motion.

Let’s now look at two additional relationships derived from Euler’s formula.

Consider the two counter-rotating unit vectors, x1 and x2, shown in Fig. 1.18.

Both are rotating at the circular frequency o but in opposite directions. At t ¼ 0,

both are horizontal and pointing to the right. We can write these two vectors as:

x1 ¼ cos otð Þ þ i sin otð Þ and x2 ¼ cos otð Þ � i sin otð Þ. Alternately, we can use

Real 

sin(w t)

cos(w t)

Imag 

w t

Fig. 1.17 The unit vector in

the complex plane with its

projections on the real and

imaginary axes

5A Maclaurin series is a Taylor series expansion of a function evaluated about zero.
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exponential notation to write x1 ¼ eiot and x2 ¼ e�iot. When the two vectors are

added, the imaginary parts always cancel so that we are left with:

x1 þ x2 ¼ cos otð Þ þ i sin otð Þð Þ þ cos otð Þ � i sin otð Þð Þ
x1 þ x2 ¼ 2 cos otð Þ: ð1:11Þ

Alternately, the sum can be expressed as: x1 þ x2 ¼ eiot þ e�iot. The right-hand

side of this equation can then be equated to the right-hand side of the second line in

Eq. 1.11 to arrive at the relationship:

cos otð Þ ¼ eiot þ e�iot

2
: (1.12)

Similarly, taking the difference between x1 and x2 gives the relationship:

sin otð Þ ¼ i
eiot � e�iot

2

� �
: (1.13)

By the Numbers 1.1

Let’s complete an example to quantitatively explore the vector representation of

vibration using the Argand diagram. Consider the signal xðtÞ ¼ 5ei2;700t ¼
5 cos 2;700tð Þ þ i sin 2;700tð Þð Þ. The circular frequency is 2,700 rad/s or 2;700

2p ¼
429:7 Hz (according to Eq. 1.4).6 The angle of the vector in the complex plane is

defined by ot ¼ 2; 700t rad, where t is expressed in seconds. For t ¼ 0:001 s, the

angle is 2.7 rad¼ 2:7 180
p ¼ 154:7�. The vector at this time is displayed in Fig. 1.19.

The projections on the real (cosine component) and imaginary (sine component)

Real 

Imag 

x1

x2

w

w

Fig. 1.18 Two counter-

rotating unit vectors used to

derive additional Euler’s

formula relationships

6 To give this frequency some frame of reference, middle C on the musical scale has a frequency of

261.63 Hz. The frequency for this example would therefore be well within the audible range if its

amplitude was large enough.
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axes are also shown. The real axis projection is: 5 cos 154:7ð Þ ¼ �4:52, while
the imaginary axis projection is: 5 sin 154:7ð Þ ¼ 2:14. Therefore, for t ¼ 0.001 s,

we can write: x 0:001ð Þ ¼ 5ei2:7 ¼ �4:52þ i2:14:

Chapter Summary

• There are three primary categories of vibration: free, forced, and self-excited. Free

vibration occurs at the system’s natural frequency when there is no long-term

forcing function. Forced vibration is the response to a periodic forcing function; the

vibrating frequency matches the forcing frequency under steady-state conditions.

Forced vibration is generally described in the frequency domain. Self-excited

vibration exists when a steady input force is modulated into vibration at a system’s

natural frequency.

Real 

Imag 

5 

154.7 deg

–4.52

2.14

0 100 200 300
–5

0

5

x

2.14

0 100 200 300
–5

0

5

x

–4.52

Real axis
projection

Imaginary axis
projection

ωt (deg)

ωt (deg)

Fig. 1.19 By the Numbers 1.1 – the vector xðtÞ ¼ 5ei2;700t is shown in the complex plane for

t ¼ 0:001 s
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• All physical systems are subject to some form of damping or energy dissipation.

• The number of independent coordinates required to describe a body’s motion is

the number of degrees of freedom. While mechanical systems possess an infinite

number of degrees of freedom in general, it is typically possible to adequately

describe a system’s behavior with a limited set of coordinates. The activity of

describing a continuous system by a discrete number of coordinates is referred to

as “modeling” the vibratory system.

• Periodic motion repeats at regular intervals; the time for each interval is called

the time constant. The vibrating frequency is related to the time constant.

• Examples of harmonic motion are the sine and cosine functions.

• An Argand diagram is the representation of complex numbers as points in the

complex plane. The complex plane axes are labeled as “Real” and “Imaginary”

to correspond to the real and imaginary parts of complex numbers.

• The Fourier series represents periodic motion as an infinite sum of sine and

cosine terms.

• Typical frequency units are rad/s and Hz.

• The exponential function can be used to represent harmonic motion.

Exercises

1. Answer the following questions.

(a) All bodies which possess ___________ and ___________ are capable of

vibrations.

(b) Name the three fundamental categories of vibration.

(c) How many degrees of freedom are necessary to fully describe the vibratory

motion of an elastic body?

2. For the waveform shown below, answer the following questions.

(a) Is this motion periodic?

(b) If the motion is periodic, what is the period of the motion (in seconds)?

(c) If the motion is periodic, what is the frequency of its motion (express your

answer in both rad/s and Hz)?

3. To explore the Fourier series representation of signals, complete the following.

…

t (s) 

x 

0 2.1 2.9 5.0 5.8 7.9 8.7 
Fig. P1.2 Example

waveform
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(a) Approximate a square wave by plotting the following function in MATLAB®.

Begin a new m-file by selecting File/New/M-File.

x ¼ 4

p
sin otð Þ þ 4

3p
sin 3otð Þ þ 4

5p
sin 5otð Þ þ 4

7p
sin 7otð Þ

Use o ¼ 2p rad/s and plot your results from t ¼ 0 to 5 s in steps of 0.001 s.

You can define your time vector using the following statement:

Also, p can be defined in MATLAB® using pi. Finally, the argument for sine

(or any harmonic function) must be in rad/s in MATLAB® (not degrees). For

example, you can define the displacement using the following statement:

To plot the result, you can use the following statements:

(b) What is the period (in seconds) of the waveform?

(c) What is the frequency in Hz?

(d) Replot the function using 50 terms (following the pattern of odd multiples

of o with the 4
np coefficients where n ¼ 1, 3, 5, . . .). What is the effect of

including additional terms?

4. If displacement can be described as x ¼ 5 cos otð Þ mm, where o ¼ 6p rad/s,

complete the following.

(a) Plot the displacement over the time interval from t ¼ 0 to 3 s in steps of

0.02 s. What is the period (in seconds) of the harmonic displacement?

(b) Plot the velocity (in mm/s) over the same time interval.

(c) Plot the acceleration (in mm/s2) over the same time interval.

(d) Calculate the maximum velocity (i.e., calculate the time derivatives and

find the maximum values) and acceleration and verify your results using

your plots.

5. The complex exponential function, x ¼ eiot, can be used to describe harmonic

motion (the function can be defined in MATLAB® using x ¼ exp
(1i*omega*t);). Complete the following to explore this function.

(a) Plot the real part of the function for o ¼ p rad/s over a time interval of

t ¼ 0 to 10 s using time steps of 0.05 s. Use the command plot(t, real
(x)) to complete this task.

t = 0:0.001:5;

x = 4/pi*sin(omega*t) + 4/(3*pi)*sin(3*omega*t) + 
4/(5*pi)*sin(5*omega*t) + 4/(7*pi)*sin(7*omega*t);

figure(1)
plot(t, x)
xlabel('t (s)')
ylabel('x(t)')
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(b) Plot the imaginary part of the function. Use the command plot(t, imag
(x)).

(c) Describe your results from parts (a) and (b) in terms of sine and cosine

functions.

(d) Sketch the Argand diagram for x at t ¼ 0.25 s and show its projections on

the real and imaginary axes. What is the numerical value of these

projections? How do these results relate to parts (a) and (b)?

6. A harmonic motion has an amplitude of 0.2 cm and a period of 15 s.

(a) Determine the maximum velocity (m/s) and maximum acceleration (m/s2)

of the periodic motion.

(b) Assume that the motion expresses the free vibration of an undamped single

degree of freedom system and that the motion was initiated with an initial

displacement and no initial velocity. Express the motion (in units of

meters) in each of the following four forms:

• A cos ontþ Fcð Þ
• A sin ontþ Fsð Þ
• B cos ontð Þ þ C sin ontð Þ
• Dei ontð Þ þ Ee�i ontð Þ.

7. Determine the sum of the two vectors x1 ¼ 6ei
p
6 and x2 ¼ �1ei

p
3.

8. If the velocity at a particular point on a body is vðtÞ ¼ 250 sin 100tð Þ, complete

the following.

(a) Plot the velocity in the complex plane at t ¼ 0:1 s.

(b) Using the velocity equation, determine the corresponding expression for

displacement.

9. In bungee jumping, a person leaps from a tall structure while attached to a long

elastic cord. Would the resulting oscillation be best described as free, forced, or

self-excited vibration?

10. The sine function can be represented as sin yð Þ ¼ y� y3
3! þ y5

5! � y7
7! þ y9

9! � � � . Plot
the percent error between sin yð Þ and:
• y radð Þ
• y� y3

3! ðradÞ
• y� y3

3! þ y5
5! radð Þ

for a range of y values from 0.001 rad to p
2
rad in steps of 0.001 rad.

Calculate the percent error using
y�sin yð Þ
sin yð Þ

� �
� 100 for the y approximation,

y�y3
3!

� �
�sin yð Þ

sin yð Þ

� �
� 100 for the y� y3

3! approximation, and so on. How do these

results relate to the small angle approximation?
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Chapter 2

Single Degree of Freedom Free Vibration

The least movement is of importance to all nature. The entire
ocean is affected by a pebble.

– Blaise Pascal

2.1 Equation of Motion

For the discussions in this chapter, we will use what is referred to as a lumped
parameter model to describe free vibration. The “lumped” designation means that

the mass is concentrated at a single coordinate (degree of freedom) and it is

supported by a massless spring and damper. Recall from Sect. 1.2.1 that free

vibration means that the mass is disturbed from its equilibrium position and

vibration occurs at the natural frequency, but a long-term external force is not

present. The lumped parameter model is typically depicted as shown in Fig. 2.1.

Here, the linear spring, k, exerts a force, f, proportional to displacement, x. See
Fig. 2.2, where the slope of the line represents the spring constant, k. This linear
relationship is referred to as Hooke’s law. Typical SI units for k are N/m.

f ¼ kx (2.1)

IN A NUTSHELL Lumped parameters do not exist in the real

world. All springs have some mass. All physical masses deform in

the presence of a force and, therefore, have stiffness. However, it is

often possible to identify system components where mass, stiffness,

or damping is the dominant feature. A lumped parameter model is

dramatically simpler and often sufficiently accurate for our purposes. It is the

essence of engineering to make the problem simple enough to be tractable, yet

sophisticated enough to reasonably represent reality.

T.L. Schmitz and K.S. Smith, Mechanical Vibrations: Modeling and Measurement,
DOI 10.1007/978-1-4614-0460-6_2, # Springer Science+Business Media, LLC 2012
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A viscous damping model is assumed in Fig. 2.1. For this type of damping, the

force is proportional to velocity; see Eq. 2.2, where c is the viscous damping

coefficient with units of force per velocity (in SI, the units are N-s/m). Physically,

viscous damping is observed by forcing a body through a fluid. For example, if you

pull your hand through the water in a swimming pool, you will find that the force

increases with your hand’s speed. Another example is a shock absorber, or dashpot,

where fluid is forced though one or more small holes. If you attempt to collapse

or expand the shock absorber more rapidly, the force increases proportionally.

Damping is discussed in more detail in Sect. 2.4.

f ¼ c _x (2.2)

IN A NUTSHELL If we assume lumped parameters and viscous

damping, then the equations of motion will be ordinary linear

differential equations with constant coefficients – one of the few

classes of differential equations that we can easily solve. This

advantage is so powerful that we often assume “equivalent” viscous

damping even when we are certain that the damping is not actually viscous.

Mass, m

Spring, k Damper, c

x(t) 

Fig. 2.1 Lumped parameter

spring–mass–damper

model for single degree of

freedom free vibration

k

x

f Fig. 2.2 Hooke’s law for

a linear spring; the spring

constant, k, is the slope
of the line
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To obtain the differential equation of motion for the spring–mass–damper

system, let’s draw the free body diagram. Figure 2.3 shows three forces acting on

the single degree of freedom mass:

• the spring force, kx
• the damping force, c _x
• the “inertial force,” m€x.

This transformation of the accelerating body into an equivalent static system by

the addition of the inertial force is referred to as d’Alembert’s principle. It enables
us to simply sum the forces and set the result equal to zero (as in the static case).

For Fig. 2.3, this “static” force sum is
P

fx ¼ �m€x� c _x� kx ¼ 0, where a positive

force is assumed in the +x direction (down in Fig. 2.3). Rewriting gives the familiar

form for the equation of motion.

m€xþ c _xþ kx ¼ 0 (2.3)

Note that this gives the same result as if we had used
P

fx ¼ m€x and not

considered the inertial force. In this case, we would have obtained
P

fx ¼ m€x ¼
�c _x� kx (where the positive force direction is again down in Fig. 2.3), orP

fx ¼ m€xþ c _xþ kx ¼ 0.

To begin our analysis of this equation of motion, let’s neglect damping for now

so that the new equation is:

m€xþ kx ¼ 0: (2.4)

IN A NUTSHELL We will see that the inclusion of damping

typically makes the results surprisingly more complex. For that

reason, it is usually easiest to start with the simpler undamped case.

This equation is similar to the “differential equation of harmonic motion”

we saw in Eq. 1.10. We have already seen in Sect. 1.5 that the exponential function

Mass, m x(t) 

mx

kx cxFig. 2.3 Free body diagram

for spring–mass–damper

system (d’Alembert’s inertial

force, f ¼ m€x, is included)
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can be used to describe harmonic motion through Euler’s formula. Therefore, let’s

assume a (harmonic) solution to Eq. 2.4 of the form:

xðtÞ ¼ Xest; (2.5)

where s ¼ io is the Laplace variable. We can then take the first and second time

derivatives of Eq. 2.5 to determine the velocity and acceleration, respectively.

_xðtÞ ¼ sXest (2.6)

€xðtÞ ¼ s2Xest (2.7)

IN A NUTSHELL The solution to a differential equation

is a function which makes it true. The solution to the differential

equation described by Eq. 2.4 is a function of time, xðtÞ, such that

the sum of its second derivative multiplied by m and the function

itself multiplied by k is zero. One solution procedure for ordinary

linear differential equations with constant coefficients (like Eq. 2.4) begins with

making an assumption of the solution form. Equation 2.5 shows a typical

assumption. One instructor somewhere in our past said we should assume xðtÞ ¼
Best because that form is the “best” assumption. This may sound corny, but it

provides a nice mnemonic. In fact, it turns out that this assumption provides all

of the solutions that exist for this differential equation.

We can now substitute for x and €x in Eq. 2.4 using Eqs. 2.5 and 2.7.

m s2Xest
� �þ k Xestð Þ ¼ 0 (2.8)

Grouping terms gives Xest ms2 þ kð Þ ¼ 0. There are two possibilities for this

equation to be true. Since it is a product of two terms, at least one of the two terms

must be equal to zero. If Xest ¼ 0, this means that no motion has occurred. Our

assumed form leads to all possible solutions and this is a valid solution. However, it

is not a very interesting outcome, so it is referred to as the trivial solution. We are

interested in the alternative:

ms2 þ k ¼ 0: (2.9)

This is used to obtain our vibration solution and is referred to as the character-
istic equation for the system. From this equation, we can identify the natural
frequency, or the frequency at which the system will vibrate if disturbed from

equilibrium and released. Because we are not considering damping in this discus-

sion, it is referred to as the undamped natural frequency, on.
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Let’s solve for s from Eq. 2.9. We see that s2 ¼ � k
m . Taking the square root

of both sides gives s ¼ �
ffiffiffiffiffiffiffi
� k

m

q
¼ �i

ffiffiffi
k
m

q
. We have already stated that s ¼ io.

Comparing these two equations for s gives the natural frequency of vibration for

our undamped single degree of freedom system.

on ¼
ffiffiffiffi
k

m

r
(2.10)

Here, we have selected the positive root to give a positive natural frequency.

If the stiffness units are N/m and the mass units are kg, then the units of natural

frequency are:

ffiffiffiffiffi
N
m

kg

s
¼

ffiffiffiffiffiffiffiffiffiffiffi
kgm

s2

m

kg
¼

s ffiffiffiffi
1

s2

r
¼ rad

s
:

Note that the unit radian does not strictly require a unit symbol and is typically

omitted inmathematics literature. It has been added here for clarity and to emphasize

the description of the rotating vector in theArgand diagram. If wewish to express the

natural frequency in units of Hz (or cycles/s), we simply apply Eq. 1.4. In this case,

we use the variable fn to indicate the alternate units of the natural frequency.

fn ¼ on

2p
(2.11)

IN A NUTSHELL Equation 2.10 makes intuitive sense. We would

expect systems that have a high natural frequency to be stiff and have

a low mass. The highest pitch guitar strings are thin and tight. We

would also expect systems that have a low natural frequency to be

more massive and flexible. The lowest pitch guitar strings are the

loosest and often have a second string wound around them to increase their mass.

The total solution to the equation of motion is the sum of the two solutions

determined from the roots of the characteristic equation: s1 ¼ þion and s2 ¼ �ion.

Using Eq. 2.5, the two solutions are summed to obtain:

xðtÞ ¼ X1e
s1t þ X2e

s2t ¼ X1e
iont þ X2e

�iont: (2.12)

In the right-hand side of this equation, the first term, X1e
iont, is a counter-

clockwise rotating vector in the complex plane and the second term, X2e
�iont, is a

clockwise rotating vector. To determine the coefficients X1 and X2, we use

the initial conditions. These are typically applied at time t ¼ 0 to the system that

was originally at equilibrium in order to disturb it from this state. We can describe

these initial conditions (or disturbances) as: (1) xð0Þ ¼ x0, the initial displacement;
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and (2) _xð0Þ ¼ _x0, the initial velocity. If we let t ¼ 0 in Eq. 2.12, we obtain

xð0Þ ¼ x0 ¼ X1e
0 þ X2e

0. Because e0 ¼ 1, we can write this as:

x0 ¼ X1 þ X2: (2.13)

Next, we take the time derivative of Eq. 2.12 to obtain dx
dt ¼ _xðtÞ ¼

ionX1e
iont � ionX2e

�iont. Setting t ¼ 0 and substituting the initial velocity gives

_xð0Þ ¼ _x0 ¼ ionX1e
0 � ionX2e

0. This result can be rewritten as:

_x0 ¼ ionX1 � ionX2: (2.14)

We can solve for X1 by multiplying Eq. 2.13 by ion and summing this result with

Eq. 2.14. The X2 terms cancel and we are left with X1 ¼ ionx0þ _x0
2ion

. Let’s rationalize

the right-hand side of this equation by multiplying both the numerator and denomi-

nator by i.

X1 ¼ i2onx0 þ i _x0
2i2on

¼ �onx0 þ i _x0
�2on

¼ onx0 � i _x0
2on

(2.15)

We can now solve for X2 using Eq. 2.13: X2 ¼ x0 � X1 ¼ 2onx0
2on

� X1. See

Eq. 2.16.

X2 ¼ 2onx0 � onx0 þ i _x0
2on

¼ onx0 þ i _x0
2on

(2.16)

Because X1 and X2 are identical except for the sign of their imaginary parts, they

are referred to as complex conjugates. We can also write them in exponential form

as described in Sect. 1.5. If the real and imaginary parts of X1 are a and b, then we

have that X1 ¼ aþ ib, where a ¼ onx0
2on

¼ x0
2
and b ¼ � _x0

2on
. In exponential notation,

the equivalent expression is X1 ¼ Aeib, where A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
and b ¼ tan�1 b

a

� �
.

These relationships are depicted in Fig. 2.4.

Again using a and b, we can express the second complex coefficient as

X2 ¼ a� ib ¼ Ae�ib. The corresponding graphical relationships between a, b, A,
and b are shown in Fig. 2.5.

Real 

Imag

A 

b 

a 

β

Fig. 2.4 Complex plane

representation of X1 ¼ Aeib
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Substituting for X1 and X2 in Eq. 2.12 gives:

xðtÞ ¼ X1e
iont þ X2e

�iont ¼ Aeibeiont þ Ae�ibe�iont

xðtÞ ¼ A ei ontþbð Þ þ e�i ontþbð Þ
� �

ð2:17Þ

Rewriting Eq. 1.12, we have that 2 cos yð Þ ¼ eiy þ e�iy, where y is an arbitrary

argument. Using this relationship, we can rewrite Eq. 2.17 as xðtÞ ¼
A 2 cos ontþ bð Þð Þ ¼ 2A cos ontþ bð Þ. As we have seen, A and b depend on on

(i.e., the model parameters k and m) and the initial conditions. Specifically,

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0
2

� �2 þ � _x0
2on

� �2r
and b ¼ tan�1

� _x0
2on

x0
2

 !
¼ tan�1 � _x0

onx0

� �
.

We can plot xðtÞ ¼ 2A cos ontþ bð Þ for two distinct cases: (1) _x0 ¼ 0 and

x0 6¼ 0; and (2) x0 ¼ 0 and _x0 6¼ 0. For the first case, b ¼ 0 and the representation

of the counterclockwise rotating vector x in the complex plane at t ¼ 0 is shown in

Fig. 2.6a. For the second case, b ¼ p
2
and x is shown at t ¼ 0 in Fig. 2.6b. The time-

domain representations of these two cases (i.e., the projection of the vectors on the

real axis) are included in Fig. 2.7a (first case) and 2.7b (second case).

We can express undamped free vibration (i.e., the solution to Eq. 2.4) in several

forms. Using somewhat careless notation (the A in the following list is not the same

A we just discussed), these forms can be generically written as:

• xðtÞ ¼ A cos ontþ Bð Þ
• xðtÞ ¼ C sin ontþ Dð Þ

Real 

Imag

A 

b 

a 

β

Fig. 2.5 Complex plane representation of X2 ¼ Ae�ib

Real 

Imag

β = 0 
Real 

Imagba

2

π
β =

2A
2

= = x0
x02

2A
2wn

= =
x0 x02

wn

Fig. 2.6 Vector representation of xðtÞ ¼ 2A cos ontþ bð Þ at t ¼ 0 for: (a) _x0 ¼ 0 and x0 6¼ 0; and

(b) x0 ¼ 0 and _x0 6¼ 0
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• xðtÞ ¼ E sin ontð Þ þ F cos ontð Þ
• xðtÞ ¼ Geiont þ He�iont;

where A through F are real-valued (no imaginary part) and G and H are complex.

IN A NUTSHELL It might seem like a long (mathematical) way

to go, but the end result is that free vibration of a single degree of

freedom systemwith no damping is sinusoidal and occurs at the natural

frequency of the system. The initial conditions might make the

vibration larger or smaller or make it look more like a sine or a cosine.

However, the initial conditions do not change the frequency of themotion. The natural

frequency is a fundamental property of a single degree of freedom system.

By the Numbers 2.1

Consider the spring–mass system shown in Fig. 2.8, where k ¼ 5� 107 N/m and

m ¼ 0.1 kg. The free body diagram is also shown. Based on this diagram, the force

balance is
P

fx ¼ 0 ¼ �m€x� kx. The equation of motion is thereforem€xþ kx ¼ 0,

as we have already seen.

m

k

x(t)

x(t)

mx

kx

Fig. 2.8 By the Numbers 2.1 – the example spring–mass system and corresponding free body

diagram are shown

ba

tt

x(t) x(t)

2A 2A

−2A −2A

Fig. 2.7 Time-domain representation of xðtÞ ¼ 2A cos ontþ bð Þ for: (a) _x0 ¼ 0 and x0 6¼ 0; and

(b) x0 ¼ 0 and _x0 6¼ 0
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Let’s consider the spring stiffness and try to make some sense of this value.

We can rewrite k ¼ 5� 107 N/m as k ¼ 5;000
100

N
mm . In other words, it requires 5,000 N

to deflect the spring by 100 mm. To put 5,000 N in more physical terms, let’s

convert it to pounds-force by dividing by 4.448. The result is 5;000
4:448 ¼ 1;124 lbf. This

is approximately 2.55 Kawasaki Ninja 500R motorcycles (curb weight 440 lbf).

If we placed these 2.55 motorcycles on top of the spring, it would deflect by 100 mm,

which is approximately the diameter of a human hair. This seems like a very stiff

spring, but this is actually a typical k value for many mechanical systems, such as the

bending stiffness for an endmill clamped in a spindle on a milling machine.

Let’s next discuss the mass of 0.1 kg. We can convert this to newtons

by multiplying Earth’s gravitational acceleration value of 9.81 m/s2. The result is

f ¼ 9:81 0:1ð Þ ¼ 0:98 N. Dividing this result by 4.448 to convert it to pounds-force,

we obtain f ¼ 0:98
4:448 ¼ 0:22 lbf. This is about the same as the precooked weight of the

beef patty on a McDonald’s Quarter Pounder. Relative to the motorcycles from

the force description, this is not much weight.

Given the stiff spring and low mass, what does your intuition tell you about the

corresponding natural frequency? You would probably expect that this combination

would yield a high natural frequency, i.e., if we did deflect the mass (supported

by the spring) from its equilibrium position and then let it vibrate, a high oscil-

lating frequency would not be a surprise. Using Eq. 2.10, we find that

on ¼
ffiffiffiffiffiffiffiffiffiffi
5�107

0:1

q
¼ 22;361 rad/s. We can express this result in Hz by applying

Eq. 2.11: fn ¼ on

2p ¼ 22;361
2p ¼ 3;559 Hz. Therefore, if we were to disturb this system

from its equilibrium position, it would complete 3,559 cycles of oscillation per

second. For comparison purposes, the highest note on a standard piano has a

frequency of 4,186 Hz, where the sound we hear is due to the free vibration of

a taut, thin wire which is excited by striking it with a “hammer” (the padded

hammer motion is initiated by the pressing of the piano key).

To solve the equation of motion for this harmonic vibration, let’s select initial

conditions of x0 ¼ 0:002 m and _x0 ¼ 0. This means that we pulled the mass down

by 0.002 m and then released it. Although many forms are available to us, let’s

use xðtÞ ¼ E sin ontð Þ þ F cos ontð Þ for the vibration description. To apply both

initial conditions and solve for E and F, we will need the time derivative of the

position:

dx

dt
¼ _xðtÞ ¼ onE cos ontð Þ � onF sin ontð Þ: (2.18)

We can now apply the two initial conditions by setting t ¼ 0.

xð0Þ ¼ x0 ¼ E sinð0Þ þ F cosð0Þ ¼ F (2.19)

_xð0Þ ¼ _x0 ¼ onE cosð0Þ � onF sinð0Þ ¼ onE (2.20)
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From Eqs. 2.19 and 2.20, we see that F ¼ x0 and E ¼ _x0
on

so that we can

generically write:

xðtÞ ¼ _x0
on

sin ontð Þ þ x0 cos ontð Þ: (2.21)

INANUTSHELL We can always use the solution form provided by

Eq. 2.21 for single degree of freedom free vibration problems when

the initial conditions are known.

Substituting our initial conditions and natural frequency, Eq. 2.21 simplifies to

xðtÞ ¼ 0:002 cos 22; 361tð Þm. The resulting vibration is shown in Fig. 2.9. Note that

the period of vibration for this example is t ¼ 1
fn
¼ 2p

on
¼ 2p

22;361 ¼ 2:81� 10�4,

s ¼ 0.281 ms.

In practice, we would expect that the free vibration magnitude would decay over

time and eventually stop, not persist with a constant magnitude as we see in Fig. 2.9.

This is because all physical systems exhibit some level of damping. However, let’s

continue this undamped example by considering a second form for the harmonic

vibration solution xðtÞ ¼ A cos ontþ Bð Þ. The derivative is:

_xðtÞ ¼ �onA sin ontþ Bð Þ: (2.22)

0 2 4 6 8

x 10−4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x 10−3

t (s)

x 
(m

)

Fig. 2.9 By the Numbers 2.1 – the free vibration response to an initial displacement of 0.002 m

is shown
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We apply the initial conditions to obtain:

xð0Þ ¼ x0 ¼ A cos 0þ Bð Þ ¼ A cosðBÞ (2.23)

and

_xð0Þ ¼ _x0 ¼ �onA sin 0þ Bð Þ ¼ �onA sinðBÞ: (2.24)

We can divide Eq. 2.24 by Eq. 2.23 to obtain:

�onA sinðBÞ
A cosðBÞ ¼ _x0

x0
; (2.25)

which can be rewritten as � on tanðBÞ ¼ _x0
x0
. Solving for the phase angle, B, gives:

B ¼ tan�1 � _x0
onx0

� �
: (2.26)

Given B, we can solve for A using Eq. 2.23:

A ¼ x0
cosðBÞ : (2.27)

For this example, we find that B ¼ tan�1 � 0
22;361 0:002ð Þ

� �
¼ 0 and A ¼ 0:002

cosð0Þ ¼
0:002 m. Substituting into xðtÞ ¼ A cos ontþ Bð Þ naturally gives the same result

we found previously: xðtÞ ¼ 0:002 cos 22; 361tð Þm. We can follow the identical

approach for any of the harmonic vibration forms provided.

2.2 Energy-Based Approach

As an alternative to drawing a free body diagram to identify the equation of motion

for a vibratory system, we can use an energy-based approach. In this method, we

recognize that oscillating systems constantly switch between kinetic and potential

energy. For our spring–mass system, we can express the kinetic energy of the

moving mass as K ¼ 1
2
mv2 and the potential energy of the spring as P ¼ 1

2
kx2.

As a check on these equations, let’s take a look at the units. For K, we have

kg m
s

� �2 ¼ kg�m
s2

m ¼ N �m. Similarly, P gives N
m
ðmÞ2 ¼ N �m. As expected, these

units describe energy/work.

The sum of the kinetic and potential energies is a constant value in time:

K + P ¼ constant. Substituting for K and P considering our spring–mass system

and taking the time derivative of this sum gives:

d

dt

1

2
mv2 þ 1

2
kx2

� �
¼ 0: (2.28)
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We now need to calculate the time derivatives of the two terms in Eq. 2.28.

Rewriting the velocity, v, as _x, its derivative is:

d

dt

1

2
m _x2

� �
¼ 1

2
m 2 _xð Þ€x ¼ m€x _xð Þ: (2.29)

Similarly, the potential energy derivative is:

d

dt

1

2
kx2

� �
¼ 1

2
k 2xð Þ _x ¼ kx _xð Þ: (2.30)

Substituting Eqs. 2.29 and 2.30 into Eq. 2.28 gives:

_x m€xþ kxð Þ ¼ 0; (2.31)

which is the same result obtained from the free body diagram approach for this

spring–mass system: m€xþ kx ¼ 0. The energy method is particularly useful when

the “mass” and “spring” elements are difficult to identify. Let’s consider an

example (Thomson and Dahley 1998).

A cylinder with mass, m, rolls without slipping on a concave cylindrical surface

as shown in Fig. 2.10. Let’s determine the cylinder’s differential equation of motion

for small oscillations about the lowest point for the concave surface (this is the

equilibrium position). For no slipping, the two arc lengths, Ry and rf, are equal:

Ry ¼ rf. Their time derivatives are also equal:

R _y ¼ r _f: (2.32)

To apply the energy method, we need to write equations for both K and P.
For the kinetic energy, there is both translation and rotation of the rolling cylinder.

The translational velocity, v, is equal to the product of the radius from the concave

surface center to the cylinder center, R� r, and the angular velocity about

the surface center, _y:

v ¼ R� rð Þ _y (2.33)

R 

r 

θ

φ

Fig. 2.10 A cylinder rolls

without slipping on a concave

cylindrical surface
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as shown in Fig. 2.11. The rotational velocity for the cylinder itself is _F ¼ _f� _y.
We require this difference because _f is counterclockwise (CCW), while _y
is clockwise (CW) as the cylinder rolls from right to left as shown in Fig. 2.12.

We can express the cylinder’s rotational velocity in terms of _y only, however,

by applying the no-slipping condition represented by Eq. 2.32. Solving this

equation for _f gives _f ¼ R
r
_y. Substitution in _f� _y yields:

_F ¼ R

r
_y� _y ¼ R� r

r

� �
_y: (2.34)

Given these velocity expressions, we can now write the kinetic energy equation.

We again have the 1
2
mv2 term for the translational kinetic energy, but we also have

a 1
2
J _F2 term for the rotational kinetic energy, where J is the mass moment of

inertia. The kinetic energy equation is:

K ¼ 1

2
m R� rð Þ _y
� �2

þ 1

2
J

R� r

r

� �
_y

� �2

: (2.35)

Simplifying Eq. 2.35 gives:

K ¼ 1

2
m R� rð Þ2 _y2 þ r2

2

R� r

r

� �2

_y
2

 !

K ¼ 1

2
m R� rð Þ2 _y

2 þ
_y
2

2

 !
¼ 3

4
m R� rð Þ2 _y2; ð2:36Þ

where we substituted for the uniform cylinder’s mass moment of inertia: J ¼ mr2

2
.

R−r

v 

v = (R−r)q
q

Fig. 2.11 Translational

velocity, v, for the rolling
cylinder

θ
CW 

CCW 

Φ = f − q

f

Fig. 2.12 Rotational

velocity, _F, for the rolling
cylinder
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Because there are no springs in this system, the potential energy is based only

on the height of the cylinder’s center above the lowest position. We can express this

in terms of the angle y as shown in Fig. 2.13, where h1 is the lowest position height
and h2 is the height that varies with y. These two heights are:

h1 ¼ r (2.37)

and

h2 ¼ R� cos yð Þ R� rð Þ: (2.38)

The gravitational potential energy is then:

P ¼ mg h2 � h1ð Þ ¼ mg R� cos yð Þ R� rð Þ � rð Þ
P ¼ mg R� rð Þ 1� cos yð Þð Þ: ð2:39Þ

Finally, we sum the kinetic and potential energy and calculate the time deriva-

tive of this sum. Alternatively, we can first calculate the derivatives of each, sum

them, and then set this result equal to zero. Note that this sum is set equal to zero

because the derivative of a constant is zero, i.e., d
dt (K + P ¼ constant) gives

dK
dt þ dP

dt ¼ 0. The kinetic and potential energy derivatives are:

d

dt
ðKÞ ¼ d

dt

3

4
m R� rð Þ2 _y2

� �
¼ 3

4
m R� rð Þ2 2 _y

� �
€y (2.40)

and

d

dt
ðPÞ ¼ d

dt
mg R� rð Þ 1� cos yð Þð Þð Þ ¼ mg R� rð Þ sin yð Þð Þ _y: (2.41)

Their sum is m _y 3
2
R� rð Þ2€yþ g R� rð Þ sin yð Þ

� �
¼ 0. For small angles, we can

approximate sin yð Þ as y and rewrite this equation as:

€yþ 2

3

g

R� rð Þ y ¼ 0: (2.42)

h1

θ

h2r 

cos(q )(R−r)

R 

R−r

Fig. 2.13 Cylinder height as

a function of the angle y
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This is the system equation of motion written in the same form as Eq. 1.10,

which is the standard form for the differential equation of harmonic motion. Using

this form, d2x
dt2 þ o2x ¼ 0, we can immediately identify the natural frequency for the

system:

on ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

g

R� rð Þ

s
: (2.43)

This equation tells us that a larger radius, R, of the concave surface should give a
lower natural frequency. Using Fig. 2.14, we see that this makes intuitive sense.

Let’s return to the spring–mass system and show how to quickly identify the

natural frequency using the energy expressions. First, we can recognize that the

kinetic energy is maximum when the potential energy is zero since their sum is

a constant. In equation form, we have Kmax + 0 ¼ constant. For the undamped,

single degree of freedom, lumped parameter model, this maximum kinetic energy is

identified when the oscillating mass is passing through its x ¼ 0 position (where the

velocity is maximum, _xmax). Naturally, the potential energy is zero at x ¼ 0 because

the spring extension is zero. Second, we can also see that the potential energy is

maximum when the kinetic energy is zero: 0 + Pmax ¼ constant. The maximum

potential energy occurs at the maximum spring extension, xmax, where the mass

velocity is zero. Because Kmax and Pmax are both equal to the same constant, we can

equate them.

1

2
m _x2max ¼

1

2
kx2max (2.44)

To determine the _xmax and xmax values, we need to select a form for the harmonic

solution of the differential equation of motion from our previous list. Let’s use

xðtÞ ¼ A cos ontþ Bð Þ. The maximum value is xmax ¼ A. The velocity is _xðtÞ ¼
�onA sin ontþ Bð Þ and its maximum value is _xmax ¼ onA. Substituting in Eq. 2.44
gives:

1

2
m o2

nA
2

� � ¼ 1

2
k A2
� �

: (2.45)

R1 R2 < R1 

wn1
wn2 > wn1

Fig. 2.14 Natural frequency dependence on R for the rolling cylinder example
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Rewriting Eq. 2.45 gives o2
n ¼ k

m . This result is the same as Eq. 2.10, which

is based on the free body diagram analysis. Solving for the natural frequency

yields on ¼
ffiffiffi
k
m

q
.

Given the rolling cylinder and spring–mass examples we have considered

in this section, you may be asking the question: “Why didn’t we include the

gravitational potential energy for the spring–mass example?” This is a great

question and its answer resides in how we are defining the x ¼ 0 location. In all

spring–mass(�damper) examples in this text, we will set x to be equal to zero at

the static equilibrium position of the mass. This means that the spring is actually

deflected from its free length by the gravitational force (mass) already. The force

balance from the static free body diagram in Fig. 2.15 is k Dhð Þ ¼ mg, where
Dh is the spring extension due to the weight of the lumped parameter mass, m.

Now let’s consider some other position while the mass is vibrating. In this case,

the spring force is k xþ Dhð Þ and the force balance from the free body diagram in

Fig. 2.16 is:

X
fx ¼ mg� k xþ Dhð Þ � m€x ¼ 0: (2.46)

Expanding this equation and substituting k Dhð Þ for mg gives

k Dhð Þ � kx� k Dhð Þ � m€x ¼ 0. Canceling and rewriting gives the expected equa-

tion of motion m€xþ kx ¼ 0. Our conclusion is that the gravity potential is canceled

by the deflected spring force, so we do not need to consider either.1

m

k

x(t)

mg 

k(Δh)

mΔh

Unstretched spring Spring
stretched
by mass  

Fig. 2.15 Static free body diagram for spring–mass system

1 This also describes why there is no gravitational force, mg, in Fig. 2.3.
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IN A NUTSHELL The gravity term does not appear in the

spring–mass system because the equations are written about

the equilibrium position. This kind of system vibrates with the same

frequency and in the same way whether it is aligned with gravity,

perpendicular to gravity, or even in the absence of gravity. In the

case of the rolling cylinder, it is gravity that supplies the spring component.

The cylinder example does not vibrate in the absence of gravity.

2.3 Additional Information

Before continuing with the spring–mass–damper (i.e., the damped harmonic

oscillator) analysis in the next section, there are three topics that we should explore.

2.3.1 Equivalent Springs

Figure 2.17 shows two possibilities for combining two springs, k1 and k2.
In Fig. 2.17a, the springs are arranged in parallel. What we’d like to do is replace

these two parallel springs with a single, equivalent spring, keq. We can find this

equivalent spring constant using Fig. 2.18. The total force, f, required to deflect the

two springs balances the sum of the two spring forces, f1 and f2, in the static case.

Because the deflection is the same for both springs, we can write:

f ¼ f1 þ f2 ¼ k1xþ k2x ¼ k1 þ k2ð Þx: (2.47)

By inspection, we see that keq ¼ k1 þ k2. For n springs in parallel with constants
k1, k2, k3, . . ., kn, the equivalent spring constant is:

keq ¼
Xn
j¼1

kj: (2.48)

mx(t)

mg 

k (Δh+x)

mx

Fig. 2.16 Free body diagram

for vibrating spring–mass

system including the

gravitational force and static

spring deflection

2.3 Additional Information 41



www.manaraa.com

For the springs in series shown in Fig. 2.17b, we recognize that a force applied

to the end of the two springs will cause a deflection, x, and that the sum of the

deflections for the individual springs, x1 and x2, must equal the total deflection.

Additionally, we know that the individual deflections depend on the force, f,

applied at the free end; see Fig. 2.19. These deflections are x1 ¼ f
k1

for the top

spring and x2 ¼ f
k2

for the bottom spring. The total deflection is therefore

x ¼ x1 þ x2 ¼ f
k1
þ f

k2
. We find the equivalent spring constant using Eq. 2.49.

keq ¼ f

x
¼ f

f
k1
þ f

k2

¼ 1
1
k1
þ 1

k2

(2.49)

In general, for n springs in series with constants k1, k2, k3, . . ., kn, the equivalent
spring constant is calculated using:

1

keq
¼
Xn
j¼1

1

kj
: (2.50)

m

k1

x(t)

k2

m

k1

x(t) 

k2

baFig. 2.17 Two springs

arranged in (a) parallel and

(b) series

x

k1x k2x

f 

Fig. 2.18 Static free body

diagram for two springs in

parallel
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IN A NUTSHELL The process of determining an equivalent

spring means that we apply a “test force” and measure the resulting

displacement. This is generally true both in our idealized models

and in practice. It is useful because springs very rarely look

like our idealized textbook picture. This concept gives us an

idea for a physical test we can use to construct an idealized model of a physical

system.

2.3.2 Torsional Systems

For single degree of freedom torsional systems, the independent coordinate is the

rotational angle, y, rather than position. We will again assume a lumped parameter

system as shown in Fig. 2.20. A massless rod, which serves as a torsional spring,

K, is attached to a disk with a mass moment of inertia, J. The spring constant for

the rod can be expressed as:

K ¼ GI

l
; (2.51)

where G is the shear modulus, I is the polar moment of inertia, and l is the rod’s

length. The shear modulus can be written as a function of the elastic modulus, E,

and Poisson’s ratio, n: G ¼ E
2 1þnð Þ . The polar moment of inertia for the rod with

diameter, d, is I ¼ pd4
32

.

k1

x

k2

x1

x2

f 

Fig. 2.19 Deflections for two

springs in series
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The free body diagram, which includes the inertial torque, is shown in Fig. 2.21.

Summing the torques (counterclockwise is assumed positive) gives
P

T ¼
�J€y� Ky ¼ 0. We can rewrite this to obtain the standard form for the torsional

differential equation of harmonic motion:

€yþ K

J
y ¼ 0: (2.52)

We can now directly identify the natural frequency: on ¼
ffiffiffi
K
J

q
.

Let’s take a look at the SI units for this system. For the spring constant, G has

units of Pa or N/m2, I has units of m4, and l has units of m. Combining these,

we obtain:

N
m2 m

4

m
¼ N �m: (2.53)

However, we can see that the stiffness is multiplied by the rotation angle to

give the final torque. Therefore, we can include units of radians in the stiffness

q (t)

Torsional
spring, K

Disk with radius, r, mass, m,
and mass moment of inertia, J

Rigid base Fig. 2.20 Lumped parameter

model for single degree of

freedom torsional system

(t)θ

Jθ

KθFig. 2.21 Free body diagram

for torsional system (top view

through the rigid base in

Fig. 2.20). The d’Alembert

inertial torque is included
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denominator: N�m
rad

. Remember that in mathematical “writing,” we can include or

exclude radians as desired.

We also need units for the disk’s mass moment of inertia. As we saw with the

rolling cylinder problem, J ¼ mr2

2
¼ md2

8
, where r indicates radius, d is diameter, and

m is the disk mass. The units are kg �m2, but we will again include radians in the

denominator for compatibility with the equation of motion: kg�m
2

rad
. Let’s now verify

the natural frequency units.

on ¼
ffiffiffiffiffiffiffiffiffi
N�m
rad

kg�m2

rad

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kg m

s2
m

kg �m2
¼

s ffiffiffiffi
1

s2

r
¼ rad

s
: (2.54)

2.3.3 Nonlinear Springs

In this text, we are only considering vibration of linear systems. However, there are

instances where a nonlinear model better describes the system behavior. One way

to incorporate nonlinear behavior is through the use of nonlinear springs, or

springs where the force is not linear with displacement as we showed in Fig. 2.2.

A common nonlinear spring model, referred to as a Duffing spring, includes a cubic
nonlinearity:

f ¼ k0xþ k1x
3: (2.55)

For the Duffing spring, k0 is the linear spring constant (k0 > 0) and k1 is the

nonlinear spring constant. If k1 is greater than zero, the spring is a hardening spring.
If k1 is less than zero, it is a softening spring. The (undamped) Duffing differential

equation of motion is:

m€xþ k0xþ k1x
3 ¼ 0; (2.56)

where the linear spring in Fig. 2.8 has simply been replaced by the Duffing

spring. Analytical solutions for such nonlinear differential equations are difficult

to obtain, but we do have some tools to help us understand their behavior. Let

us explore the Duffing spring in MATLAB® MOJO 2.1. In this example, we will

compare the displacement–force relationships for three cases: (1) k1 ¼ 0 (linear);

(2) k1 ¼ 2.5�104 N/m3 (hardening); and (3) k1 ¼ �2.5 � 104 N/m3 (softening). In

all instances, k0 ¼ 1�103 N/m. The results are provided in Fig. 2.22. Note that these

values were selected for plotting convenience and do not represent a particular

physical system.

2.3 Additional Information 45



www.manaraa.com

MATLAB® MOJO 2.1 
% matlab_mojo_2_1.m

clc
clear all
close all

% define variables
x = -0.1:0.001:0.1;         % m
k0 = 1000;                  % N/m

% define force
F = k0*x;
k1 = 25000;                 % N/m^3

Fstiff = F + k1*x.^3;       % stiffening spring
Fsoft = F - k1*x.^3;        % softening spring

figure(1)
plot(x*1e3, F, 'k-', x*1e3, Fstiff, 'k:', x*1e3, Fsoft, 'k--')
set(gca,'FontSize', 14)
xlabel('x (mm)')
ylabel('F (N)')
legend('k_1 = 0', 'k_1 > 0', 'k_1 < 0')
grid
axis([-100 100 -130 130])
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Fig. 2.22 Duffing spring responses for linear, hardening, and softening cases
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2.4 Damped Harmonic Oscillator

Let’s now include damping in the single degree of freedom spring–mass lumped

parameter model. As we mentioned previously, all systems exhibit damping or

“losses.” There are three main types of damping used to model physical systems.

2.4.1 Viscous Damping

As we discussed previously, the viscous damping model relates force to velocity as

shown in Eq. 2.2. In this equation, the proportionality constant c is the viscous

damping coefficient with SI units of N-s/m. Physically, this model adequately

describes the retarding force on a body that is moving at a moderate speed through

a fluid. Because it is convenient to implement mathematically, it is the most

common selection for modeling vibratory systems.

2.4.2 Coulomb Damping

This type of damping represents the energy dissipation due to dry sliding between

two surfaces (or friction). In this case, the force, which always opposes the direction

of motion, is described by Eq. 2.57. In this equation, m is the friction coefficient and

N is the normal force between the two bodies, which is perpendicular (normal) to

the contacting surfaces.

f ¼ mN (2.57)

2.4.3 Solid Damping

Solid, or structural, damping occurs due to internal energy dissipation within the

material of the vibrating body. Consider a steel beam floating in space. If an

astronaut were to tap this beam at its end, it would begin to rotate about its center

of mass – this is referred to as rigid body motion – and it would also begin vibrating.
Since nothing is touching the beam and there is no obvious resistance to motion,

why does the vibrating motion eventually stop? This is solid damping and we will

describe it using a complex elastic modulus for the beam material, Es in Sect. 8.3.

See Eq. 2.58, where � is the material-dependent solid damping factor.

Es ¼ E 1þ i�ð Þ (2.58)
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2.4.4 Damped System Behavior

Since viscous damping is the most common modeling choice, we will consider it

now to represent our single degree of freedom spring–mass–damper system.As shown

in Figs. 2.1 and 2.3 from Sect. 2.1, the equation of motion is m€xþ c _xþ kx ¼ 0

(see Eq. 2.3). Because the vibratory response when the system is disturbed

from its equilibrium position is again harmonic, we can select a solution of the

form xðtÞ ¼ Xest with _xðtÞ ¼ sXest and €xðtÞ ¼ s2Xest. Substituting in the equation of
motion and grouping terms gives:

ms2 þ csþ ks
� �

Xest ¼ 0: (2.59)

As with the undamped model, there are two options for Eq. 2.59. If Xest ¼ 0, no

motion has occurred and this is referred to as the trivial solution. The characteristic

equation is therefore:

ms2 þ csþ ks ¼ 0: (2.60)

The characteristic equation is quadratic in s and has two roots. Dividing by m
gives s2 þ c

m sþ k
m ¼ 0 and the two roots can be determined using the quadratic

equation.

s1;2 ¼
� c

m
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

m

� �2
� 4ð1Þ k

m

r

2ð1Þ ¼ � c

2m
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

2m

� �2
� k

m

r
(2.61)

The total solution for the system vibration is the sum of the two harmonic

responses defined by the two roots: xðtÞ ¼ X1e
s1t þ X2e

s2t ¼ X1e
� c

2mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

c
2mð Þ2�k

m

q� �
tþ

X2e
� c

2m �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c
2m

� �2 � k
m

q� �
t

. This equation can be rewritten as shown in Eq. 2.62,

where the first term in the product (i.e., the exponential term) describes the damping

envelope that bounds the decaying oscillation and the second term (in parentheses)

defines the oscillatory part.

xðtÞ ¼ e � c
2mð Þt X1e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
2mð Þ2� k

m

q� �
t þ X2e

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
2mð Þ2� k

m

q� �
t

0
@

1
A (2.62)

The system behavior depends on the value of the radical expression,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
2m

� �2 � k
m

q
, and there are three possibilities.

1. If c
2m

� �2 � k
m < 0, the characteristic equation will have complex roots (i.e., s1

and s2 will have both real and imaginary parts). In this case, the response is

vibratory (see Eq. 2.62).
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2. If c
2m

� �2 � k
m>0, the characteristic equation will have real-valued roots and there

is no oscillation. The viscous damping is large enough to prevent vibration.

3. If c
2m

� �2 � k
m ¼ 0, the two roots are real and equal, s1;2 ¼ � c

2m , and there is just

no oscillation. This case is referred to as critical damping. If a system with

critical damping is displaced, it will return to its equilibrium position as quickly

as possible without ever passing through the equilibrium position.

We can determine the damping coefficient required to achieve critical damping,

cc, by rearranging the radical equation for case 3: cc
2m

� �2 � k
m ¼ 0. We have that

cc
2m

� �2 ¼ k
m or cc ¼ 2m

ffiffiffi
k
m

q
. Finally, by simplifying we obtain:

cc ¼ 2
ffiffiffiffiffiffi
km

p
: (2.63)

We can now define a dimensionless parameter, referred to as the damping ratio,
using the critical damping coefficient. The damping ratio, z, is:

z ¼ c

cc
¼ c

2
ffiffiffiffiffiffi
km

p : (2.64)

IN A NUTSHELL It is often convenient to describe the

damping of a system in comparison to the damping that would just

prevent vibration. This is the damping ratio. A damping ratio of,

say, 0.3 means that the system has 30% of the damping required to

prevent vibration. Unless designers make special efforts, most

mechanical structures have very low damping ratios – almost always less than 10%

and more typically on the order of 1–5%.

Let’s now see how we can rewrite the equation of motion to use the damping

ratio. We have already seen the form s2 þ c
m sþ k

m ¼ 0. We can write the final

term, k
m , as on

2, but what about the c
m coefficient on s? This can be expressed

as c
m ¼ 2zon. Solving for z gives z ¼ c

2mon
. This can be rewritten as

z ¼ c

2
ffiffiffiffi
m2

p ffiffi
k
m

p ¼ c

2

ffiffiffiffiffi
km2

m

p ¼ c
2
ffiffiffiffi
km

p , which validates the c
m ¼ 2zon equation. We can

therefore rewrite the equation of motion in the form shown in Eq. 2.65. We will

use this form in many instances as we move forward.

s2 þ 2zonsþ on
2 ¼ 0 (2.65)

In the same way as we discussed for the radical expression value, there are three

possibilities for the damping ratio.

1. If z<1 (c<cc), the response is vibratory with a magnitude that decays exponen-

tially over time. The system that exhibits this behavior is referred to as

underdamped. This is the situation for most mechanical systems.

2. If z> 1 (c> cc), there is no vibration. This is the overdamped case.

3. If z ¼ 1 (c ¼ cc), the system is critically damped.
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2.4.5 Underdamped System

Let’s explore the underdamped case in a little more detail. As stated earlier, the two

roots of the characteristic equation will be complex-valued. These roots are calcu-

lated using Eq. 2.61, where the term under the radial is negative. Let’s verify that

the radial term is indeed negative for an underdamped system. We need to show that

c
2m

� �2 � k
m < 0. This equation can be rewritten as c

2m <
ffiffiffi
k
m

q
(or c < 2mon) and

simplified to obtain c< 2
ffiffiffiffiffiffi
m2

p ffiffiffi
k
m

q
, or c< 2

ffiffiffiffiffiffi
km

p
. Because this is equivalent to

c < cc, which indicates underdamped behavior, we have validated our assertion.

Let’s rewrite the radical term as � k
m � c

2m

� �2� �
. Using the undamped natural

frequency and damping ratio, we can then redefine this expression as

� on
2 � zonð Þ2

� �
¼ � on

2 1� z2
� �� �

. We can substitute this result in Eq. 2.61

to obtain a new form for the roots equation as shown in Eq. 2.66.

s1;2 ¼ �zon �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� on

2 1� z2
� �� �q

s1;2 ¼ �zon � ion

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
ð2:66Þ

We can now introduce the damped natural frequency, od, which describes the

frequency of free vibration when damping is present:

od ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
: (2.67)

Because the damping ratio for mechanical systems is typically small (z < 0.1),

the value of the damped natural frequency is only slightly less than the undamped

natural frequency. For example, if z ¼ 0.05 (5% viscous damping), then

od ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:052

p
¼ 0:999on.

The roots in Eq. 2.66 can now be written in more compact notation:

s1;2 ¼ �zon � iod. Substitution in the assumed harmonic form enables us to

rewrite Eq. 2.62 as shown in Eq. 2.68, where the first term in the product again

describes the damping envelope that bounds the oscillation (at the damped natural

frequency) defined by the second term in the product. See Fig. 2.23.

xðtÞ ¼ e�zont X1e
iodt þ X2e

�iod t
� �

(2.68)

For the exponential term in Eq. 2.68, a higher damping ratio gives a more rapid

decay rate. For the oscillatory part, if the period of vibration is t (expressed in

seconds), the damped natural frequency (in Hz) is:

fd ¼ 1

t
: (2.69)

Also, the relationship between the damped natural frequency in rad/s,od, and Hz

is od ¼ 2pfd, as we saw for the undamped case.
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By the Numbers 2.2

Let’s calculate the free vibration response for a spring–mass–damper system with

the following parameters:

• m ¼ 1 kg

• c ¼ 20 N-s/m

• k ¼ 1�104 N/m

• the initial displacement is x0 ¼ 25 mm

• the initial velocity is _x0 ¼ 1;000 mm/s.

The undamped natural frequency is on ¼
ffiffiffi
k
m

q
¼

ffiffiffiffiffiffiffiffiffiffi
1�104

1

q
¼ 100 rad/s.

Converting to Hz, we obtain fn ¼ on

2p ¼ 15:9 Hz. The damping ratio is z ¼ c
2
ffiffiffiffi
km

p ¼
20

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�104ð1Þ

p ¼ 0:1 (or 10% damping). The damped natural frequency is therefore

od ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:12

p
¼ 99:5 rad/s.

For this underdamped case, we can use the form for the solution provided in

Eq. 2.68. In order to apply the initial conditions, we also need the velocity, which

we obtain by calculating the time derivative of Eq. 2.68. See Eq. 2.70.

_xðtÞ ¼ e�zont iodð Þ X1e
iodt � X2e

�iod t
� �� zone

�zont X1e
iodt þ X2e

�iod t
� �

(2.70)

Substituting t ¼ 0 into Eqs. 2.68 and 2.70 gives:

xð0Þ ¼ x0 ¼ X1 þ X2 (2.71)

and

_xð0Þ ¼ _x0 ¼ iod X1 � X2ð Þ � zon X1 þ X2ð Þ: (2.72)

t 

x(t)

τ

Damping envelope 

Fig. 2.23 Damped free

vibration response

2.4 Damped Harmonic Oscillator 51



www.manaraa.com

Using Eq. 2.71, we can substitute for X1 þ X2ð Þ in Eq. 2.72. This gives

_x0 ¼ iod X1 � X2ð Þ � zonx0. Solving this equation for X1 � X2ð Þ yields X1 � X2 ¼
_x0þzonx0

iod
. We can rationalize this equation by multiplying both the numerator and

denominator by the imaginary variable i:

X1 � X2 ¼ _x0 þ zonx0
iod

i

i
¼ �i _x0 þ zonx0ð Þ

od
: (2.73)

We can now add Eqs. 2.71 and 2.73 to eliminate X2. The result is:

X1 ¼ x0
2
� i

_x0 þ zonx0ð Þ
2od

: (2.74)

Using Eq. 2.71, we can then determine X2.

X2 ¼ x0
2
þ i

_x0 þ zonx0ð Þ
2od

(2.75)

The coefficients X1 and X2 are complex conjugates. This is always the case for

this form of the underdamped harmonic motion solution. Substituting the values

for this example into Eqs. 2.74 and 2.75 gives:

X1 ¼ 25

2
� i

100þ 0:1 100ð Þ25ð Þ
2 99:5ð Þ ¼ 12:5� i6:28

and

X2 ¼ 12:5þ i6:28:

Let’s rewrite these expressions in vector notation before substituting in the

response equation (Eq. 2.68). The vector representations of these complex

conjugates are plotted in Fig. 2.24. Using this figure, we can determine the

magnitude and phase for each vector. The magnitude, which is the square root of

12.5 

6.28

−6.28 

Real

Imag

q2

q1

X2

X1

Fig. 2.24 X1 and X2 complex

conjugates
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the sum of the squares of the real (Re) and imaginary (Im) parts, is the same for

both vectors and is given by:

X1;2

		 		 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2 þ Im2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12:52 þ 6:282

p
¼ 13:99:

The phase is the inverse tangent of the ratio of the imaginary part to the real

part; this is evident from Fig. 2.25 which highlights the “triangle” formed by

the real and imaginary parts of the X2 vector. The corresponding phase is

y2 ¼ tan�1 Im
Re

� � ¼ tan�1 6:28
12:5

� � ¼ 0:466, rad ¼ 26.67�. For the X1 vector, the phase

is y1 ¼ tan�1 Im
Re

� � ¼ tan�1 �6:28
12:5

� � ¼ �0:466, rad ¼ �26.67�.
The vector notations for X1 and X2 are then:

X1 ¼ 13:99e�i0:466

X2 ¼ 13:99ei0:466:

We can now substitute in Eq. 2.68, where zon ¼ 0:1 100ð Þ ¼ 10 rad/s and

od ¼ 99:5 rad/s.

xðtÞ ¼ e�zont X1e
iodt þ X2e

�iod t
� � ¼ e�10t 13:99e�i0:466ei99:5t þ 13:99ei0:466e�i99:5t

� �
xðtÞ ¼ 13:99e�10t ei 99:5t�0:466ð Þ þ e�i 99:5t�0:466ð Þ

� �

Using Eq. 1.12 (derived from Euler’s formula), we can rewrite this equation as:

xðtÞ ¼ 2 13:99ð Þe�10t cos 99:5t� 0:466ð Þ ¼ 27:98e�10t cos 99:5t� 0:466ð Þ mm,

where the magnitude is 27.98 mm, the phase is �0.466 rad, and the decay rate is

described by the exponential term e�10t. This damped free vibration response is shown

in Fig. 2.26, where the initial value xð0Þ ¼ 27:98e�10ð0Þ cos 99:5ð0Þ � 0:466ð Þ ¼
27:98 cos �0:466ð Þ ¼ 25 mm matches the initial displacement, x0 ¼ 25 mm, and

the period of vibration is:

t ¼ 1

fd
¼ 2p

od
¼ 2p

on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p ¼ 2p

100
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:12

p ¼ 0:063 s:

q2

12.5 

6.28

Real

ImagFig. 2.25 Phase calculation

for X2
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Figure 2.26 was produced using the code provided in MATLAB® MOJO 2.2.

MATLAB® MOJO 2.2
% matlab_mojo_2_2.m

clc
clear all
close all

% define variables
A = 27.98;                  % mm
omegan = 100;               % rad/s
zeta = 0.1;
omegad = omegan*sqrt(1-zeta^2);
fd = omegad/2/pi;           % Hz
tau = 1/fd;       % s
phi = 0.466;                % rad
t = 0:tau/100:6*tau;        % s

% define displacement
x = A*exp(-zeta*omegan*t).*cos(omegad*t - phi);      % mm

figure(1)
plot(t, x, 'k-')
set(gca,'FontSize', 14)
xlabel('t (s)')
ylabel('x (mm)')
grid
axis([0 max(t) -29 29])
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−20
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10

20
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x 
(m

m
)

Fig. 2.26 By the Numbers 2.2 – free vibration response for damped system
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By the Numbers 2.3

Let’s now consider the free vibration response for a spring–mass–damper system

with an initial displacement xð0Þ ¼ x0 and zero initial velocity for three cases:

(1) z ¼ 2 (overdamped); (2) z ¼ 0:2 (underdamped); and (3) z ¼ 1 (critically

damped).

1. Overdamped (z ¼ 2)

Because there are two real-valued roots for the characteristic equation, we can

write the response in the following form:

xðtÞ ¼ X1e
�zþ

ffiffiffiffiffiffiffiffi
z2�1

p� �
ont þ X2e

�z�
ffiffiffiffiffiffiffiffi
z2�1

p� �
ont: (2.76)

The corresponding velocity equation is:

_xðtÞ¼ �zþ
ffiffiffiffiffiffiffiffiffiffiffiffi
z2�1

q� �
onX1e

�zþ
ffiffiffiffiffiffiffiffi
z2�1

p� �
ontþ �z�

ffiffiffiffiffiffiffiffiffiffiffiffi
z2�1

q� �
onX2e

�z�
ffiffiffiffiffiffiffiffi
z2�1

p� �
ont:

(2.77)

For z ¼ 2, the exponent term � z�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
is � 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
22 � 1

p
¼ �2� ffiffiffi

3
p

.

Substituting gives:

xðtÞ ¼ X1e
�2þ ffiffi

3
pð Þont þ X2e

�2� ffiffi
3

pð Þont

for position and:

_xðtÞ ¼ �2þ
ffiffiffi
3

p� �
onX1e

�2þ ffiffi
3

pð Þont þ �2�
ffiffiffi
3

p� �
onX2e

�2� ffiffi
3

pð Þont:

for velocity.

We can now apply the initial conditions xð0Þ ¼ x0 and _xð0Þ ¼ 0.

Substituting gives: xð0Þ ¼ _x0 ¼ X1 þ X2 and _xð0Þ ¼ 0 ¼ �2þ ffiffiffi
3

p� �
onX1þ

�2� ffiffiffi
3

p� �
onX2. The velocity equation can be simplified to be _xð0Þ ¼ 0 ¼

�2þ ffiffiffi
3

p� �
X1þ �2� ffiffiffi

3
p� �

X2 by dividing both sides by on. We now have a

system of two linear equations with two unknowns. We could solve for X1 and X2

by a variety of methods, but let’s use matrix inversion here since we will begin

writing our equations of motion in matrix form for the two degree of freedom

systems in Sect. 4.1. Our two equations in matrix form are:

1 1

�2þ ffiffiffi
3

p �2� ffiffiffi
3

p

 �

X1

X2


 �
¼ x0

0


 �
;
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where the position equation is the top row of the 2�2 (rows � columns) matrix

multiplied by the 2�1 column vector
X1

X2


 �
and set equal to the top, or (1,1),

entry, x0, in the 2�1 column vector on the right-hand side of the equal sign
x0
0


 �
.

We perform this term-by-term multiplication to obtain ð1ÞX1 þ ð1ÞX2 ¼ x0.
Similarly, the second row gives the velocity equation. We multiply the (2,1)

entry, � 2þ ffiffiffi
3

p
, in the 2�2 matrix by X1 and the (2,2) entry, � 2� ffiffiffi

3
p

,

by X2 and set the result equal to 0, the (2,1) entry in the column vector on the

right-hand side of the equation. If we rewrite this matrix equation as A~X ¼ ~B,
then algebraically we know that we can find ~X by moving A to the right-hand

side of the equation. For scalar values, we can simply divide both sides by A or,

equivalently, multiply both sides by the inverse of A. We can write this as
~X ¼ A�1~B. In our matrix problem, we can perform the same operation, but

determining the inverse of the 2�2 A matrix requires a little work.2 Let’s first

write the ~X ¼ A�1~B equation explicitly.

X1

X2


 �
¼ 1 1

�2þ ffiffiffi
3

p �2� ffiffiffi
3

p

 ��1

x0
0


 �

Inverting the 2�2 A matrix to determine A�1 requires three steps.

1. Switch the on-diagonal terms. This means that we replace the (1,1) entry, 1,

by the (2,2) entry, � 2� ffiffiffi
3

p
, and the (2,2) entry by the (1,1) entry.

2. Change the signs of the off-diagonal terms. The (1,2) entry becomes �1 and

the (2,1) entry becomes � �2þ ffiffiffi
3

p� � ¼ 2� ffiffiffi
3

p
.

3. Divide each entry in the matrix by the determinant. For a 2�2 matrix, the

determinant is the difference between the product of the on-diagonal terms

and the product of the off-diagonal terms, i.e., 1; 1ð Þ 2; 2ð Þ � 1; 2ð Þ 2; 1ð Þ.
For our matrix, this is:

ð1Þ �2�
ffiffiffi
3

p� �
� ð1Þ �2þ

ffiffiffi
3

p� �
¼ �2�

ffiffiffi
3

p
þ 2�

ffiffiffi
3

p
¼ �2

ffiffiffi
3

p
:

The result for the matrix inversion is:

1 1

�2þ ffiffiffi
3

p �2� ffiffiffi
3

p

 ��1

¼ 1

�2
ffiffiffi
3

p �2� ffiffiffi
3

p �1

2� ffiffiffi
3

p
1

" #

¼ 1

2
ffiffiffi
3

p 2þ ffiffiffi
3

p
1

�2þ ffiffiffi
3

p �1

" #
:

2 These matrix manipulations are a subset of the topics covered in a linear algebra course.
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Matrix inversion can also be completed in MATLAB® using the inv command.

From the command prompt (�), we first define the 2�2 A matrix. The semico-

lon indicates the end of the first row in the matrix description.

>> A = [1 1;-2+sqrt(3) -2-sqrt(3)] 

A = 

    1.0000    1.0000 
   -0.2679   -3.7321 

We next determine the matrix inverse. The answer (ans) shown below is

identical to the result we obtained using the three-step inversion procedure.

>> inv(A) 

ans = 

    1.0774    0.2887 
   -0.0774   -0.2887 

The complete matrix equation is now:

X1

X2


 �
¼ 1

2
ffiffiffi
3

p 2þ ffiffiffi
3

p
1

�2þ ffiffiffi
3

p �1


 �
x0
0


 �
:

We write the X1 equation using the top row:

X1 ¼ 1

2
ffiffiffi
3

p 2þ
ffiffiffi
3

p� �
x0 þ ð1Þ0

� �
¼ 2þ ffiffiffi

3
p

2
ffiffiffi
3

p x0 � 1:08x0:

We determine X2 from the bottom row:

X2 ¼ 1

2
ffiffiffi
3

p �2þ
ffiffiffi
3

p� �
x0 þ �1ð Þ0

� �
¼ �2þ ffiffiffi

3
p

2
ffiffiffi
3

p x0 � �0:08x0:

Substituting in Eq. 2.76 gives:

xðtÞ ¼ 1:08x0e
�2þ ffiffi

3
pð Þont � 0:08x0e

�2� ffiffi
3

pð Þont or

xðtÞ
x0

¼ 1:08e �0:27ð Þont � 0:08e �3:73ð Þont:

The ratio is plotted as a function of ont in Fig. 2.27.

2. Underdamped (z ¼ 0:2)
We can write the response for the underdamped system with two complex

conjugate roots from the characteristic equation as shown in Eq. 2.68:

xðtÞ ¼ e�zont X1e
i
ffiffiffiffiffiffiffiffi
1�z2

p
ont þ X2e

�i
ffiffiffiffiffiffiffiffi
1�z2

p
ont

� �
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or, equivalently, as:

xðtÞ ¼ Xe�zont sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
ontþ f

� �
: (2.78)

The velocity equation is:

_xðtÞ ¼ �zonXe
�zont sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
ontþ f

� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
onXe

�zont cos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
ontþ f

� �
: (2.79)

In this example, xð0Þ ¼ x0, _xð0Þ ¼ 0, and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:22

p
¼ ffiffiffiffiffiffiffiffiffi

0:96
p

.

Substituting gives:

xð0Þ ¼ x0 ¼ X sin fð Þ and

_xð0Þ ¼ 0 ¼ �0:2onX sin fð Þ þ
ffiffiffiffiffiffiffiffiffi
0:96

p
onX cos fð Þ:

We can use the velocity equation to determine f. Rewriting gives:

0:2onX sin fð Þ ¼
ffiffiffiffiffiffiffiffiffi
0:96

p
onX cos fð Þ or X sin fð Þ

X cos fð Þ ¼ tan fð Þ ¼
ffiffiffiffiffiffiffiffiffi
0:96

p
on

0:2on
:

This yields f ¼ 1:37 rad ¼ 78.5�. Using the position equation, we solve for X:

X ¼ x0
sin fð Þ ¼

x0ffiffiffiffiffiffiffiffiffi
0:96

p :

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

ωnt (rad)

x/
x 0

Fig. 2.27 By the Numbers 2.3 – response for overdamped system with initial displacement only

58 2 Single Degree of Freedom Free Vibration



www.manaraa.com

Substituting in Eq. 2.78 gives:

xðtÞ ¼ x0ffiffiffiffiffiffiffiffiffi
0:96

p e�0:2ont sin
ffiffiffiffiffiffiffiffiffi
0:96

p
ontþ 1:37

� �
or

xðtÞ
x0

¼ 1ffiffiffiffiffiffiffiffiffi
0:96

p e�0:2ont sin
ffiffiffiffiffiffiffiffiffi
0:96

p
ontþ 1:37

� �
:

This ratio is plotted in Fig. 2.28. Note that the response is now oscillatory for

the underdamped system.

3. Critically damped (z ¼ 1)

The response for this case is written as:

xðtÞ ¼ X1 þ X2tð Þe�ont (2.80)

because there are two repeated, real-valued roots. The corresponding velocity

equation is:

_xðtÞ ¼ �on X1 þ X2tð Þe�ont þ X2e
�ont: (2.81)

Substituting the initial conditions, xð0Þ ¼ x0 and _xð0Þ ¼ 0, into Eqs. 2.80 and

2.81 gives xð0Þ ¼ x0 ¼ X1 and _xð0Þ ¼ 0 ¼ �on X1ð Þ þ X2. From the velocity

equation, we obtain X2 ¼ onX1 ¼ onx0. We can now replace X1 and X2 in

Eq. 2.80 to find the position as a function of on, x0, and t. The ratio
xðtÞ
x0

is

plotted versus ont in Fig. 2.29. As a check on this figure, we can see that the

value is 1 at ont ¼ 0 as expected, x
x0
¼ 1þ 0ð Þe0 ¼ 1.

xðtÞ ¼ x0 þ onx0tð Þe�ont or
xðtÞ
x0

¼ 1þ ontð Þe�ont

0 2 4 6 8 10

−1

−0.5

0

0.5

1

ωnt (rad)

x/
x 0

Fig. 2.28 By the Numbers 2.3 – response for underdamped system with initial displacement only
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2.4.6 Damping Estimate from Free Vibration Response

We have said that all physical systems include damping and we have seen that the

amount of damping influences the resulting free vibration response. We can now

“reverse engineer” this analysis. We will use the behavior during free oscillation

to determine the amount of damping in a system. Quantifying damping is important

because it is difficult to predict using models. Designers can use the material

properties and dimensions of the components in a structure to predict the natural

frequencies using finite element analysis, for example. However, the magnitude

of the vibrations that occur when the structure is excited is more challenging to

predict based only on first principles. Therefore, damping is typically identified

experimentally.

We have already seen in Eq. 2.78 that the free vibration response of an under-

damped single degree of freedom system can be written as xðtÞ ¼ Xe�zont

sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
ontþ f

� �
. The general response is shown in Fig. 2.30, where the

response value is identified at two time instants, t1 and t2, separated by the damped
period of vibration:

td ¼ 1

fd
¼ 2p

od
¼ 2p

on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p : (2.82)

ωnt (rad)
0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

x/
x 0

Fig. 2.29 By the Numbers 2.3 – response for critically damped system with initial displacement

only
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We see that the response decreases from x1 to x2 over the period, td. For the
viscously damped system, we also know that the decay is exponential and depends

on the damping ratio, z. We can therefore define the logarithmic decrement, d,
to describe this amplitude reduction:

d ¼ ln
x1
x2

� �
: (2.83)

We can now substitute for x1 and x2 in Eq. 2.83 using the expression xðtÞ ¼
Xe�zont sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
ontþ f

� �
evaluated at the times, t1 and t2:

d ¼ ln
Xe�zont1 sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
ont1 þ f

� �

Xe�zont2 sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
ont2 þ f

� �
0
@

1
A: (2.84)

We can simplify Eq. 2.84 by recognizing that t2 ¼ t1 þ td.

d ¼ ln
Xe�zont1 sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
ont1 þ f

� �

Xe�zon t1þtdð Þ sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
on t1 þ tdð Þ þ f

� �
0
@

1
A (2.85)

Because the sine function is periodic, we know that sin t1ð Þ ¼ sin t1 þ tdð Þ. This
enables us to rewrite Eq. 2.85 because the sine terms in the numerator and

denominator cancel.

d ¼ ln
e�zont1

e�zon t1þtdð Þ

� �
¼ ln

e�zont1

e�zont1e�zontd

� �
¼ ln ezontd

� � ¼ zontd (2.86)

td

t

x1 x2

t1 t2

x(t)Fig. 2.30 General response

for the free vibration of an

underdamped single degree of

freedom system
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We can now experimentally determine the damping ratio by following three steps.

1. Substitute for td in Eq. 2.86 using Eq. 2.82.

d ¼ zontd ¼ zon
2p

on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p ¼ 2pzffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p (2.87)

2. Measure x1 and x2 during free vibration and calculate d using Eq. 2.83.

3. Solve for z from Eq. 2.87. Rewriting gives d
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
¼ 2pz. By squaring both

sides, we obtain d2 1� z2
� � ¼ 4p2z2. Combining terms yields z2 ¼ d2

4p2þd2
,

which we can write as:

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2

4p2 þ d2

s
: (2.88)

Alternately, we can recognize that
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
� 1 for small z so that we can

rewrite Eq. 2.87 as d ’ 2pz. Solving for z gives:

z ’ d
2p

: (2.89)

IN A NUTSHELL Equation 2.89 provides a very useful result.

In a physical single degree of freedom system, we know how to

measure the mass, m, using a balance, for example. We can apply a

static force and measure the resulting deflection to identify the static

stiffness, k. Damping is more difficult to quantify. We often are not

even sure about the source of the damping. Is it viscous? Did it come from friction?

An easy way to determine the equivalent viscous damping is to initiate vibration

and then measure the height of two successive vibration peaks. The natural logarithm

of the ratio of the peak heights divided by 2p closely approximates the damping ratio.

Experimentally, when the damping ratio is low, the difference in two successive

peak heights may be small and, therefore, difficult to measure accurately.

However, because this ratio of peak heights holds for any two successive peaks,

the accuracy of the estimate may be improved by considering the heights of peaks

separated by several cycles, N. That is, x0
xN

¼ x0
x1

� �
x1
x2

� �
x2
x3

� �
::: xN�1

xN

� �
¼ x0

x1

� �N
, so ln

x0
xN

� �
¼ N ln x0

x1

� �
¼ Nd. This means that in order to calculate the damping ratio

using the peak height change over several cycles, we compute the natural logarithm

of the ratio, divide by 2p, and divide this result by the number of cycles.

Additionally, this approach can be used to determine how many cycles of the

motion would be required for the vibration to fall below a predetermined amplitude.

If the damping ratio is known, then we can solve for N.
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2.4.7 Damping Estimate Uncertainty

For any measurement, there is always uncertainty associated with the result. For the
logarithmic decrement, the combined standard uncertainty in the damping ratio,

uc zð Þ, depends on the standard uncertainties in the measurements of x1 and x2, u x1ð Þ
and u x2ð Þ (Taylor and Kuyatt 1994). To determine how these uncertainties are

related, we can perform a first-order Taylor series expansion of Eq. 2.89 after

substituting for d: z ’ 1
2p ln x1

x2

� �
¼ 1

2p ln x1ð Þ � ln x2ð Þð Þ. If we neglect any potential

relationship (or correlation) between the x1 and x2 values, represented by the

covariance, we can find uc zð Þ using:

uc
2 zð Þ ¼ @z

@x1

� �2

u2 x1ð Þ þ @z
@x2

� �2

u2 x2ð Þ; (2.90)

where the partial derivatives are @z
@x1

¼ 1
2p

1
x1

and @z
@x2

¼ 1
2p

1
x2
. Substituting gives:

uc zð Þ ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 x1ð Þ
x12

þ u2 x2ð Þ
x22

s
; (2.91)

where the average (or mean) values of x1 and x2 are used to evaluate the combined

standard uncertainty.

By the Numbers 2.4

The tip displacement for a freely vibrating cantilever beam was measured as shown

in Fig. 2.31. The displacement values, x1 and x2, were recorded at two times,

separated by the damped vibration period of 0.01 s; these values were 0.93 mm

and 0.82 mm. The manufacturer-specified measurement uncertainty for the linear
variable differential transformer3 (LVDT) used to perform the displacement mea-

surement was 0.01 mm. Let’s determine the damped natural frequency, mean value

of the damping ratio, and the associated uncertainty in the damping ratio for this

measurement activity.

First, we use Eq. 2.82 to find the damped natural frequency, fd ¼ 1
td
¼ 1

0:01 ¼
100 Hz. Second, for the mean damping ratio, we use Eq. 2.83 to calculate the

logarithmic decrement, d ¼ ln x1
x2

� �
¼ ln 0:93

0:82

� � ¼ 0:13. The damping ratio is then

3An LVDT is a transformer with three coils placed next to one another around a tube.

A ferromagnetic core slides in and out of the tube; this cylindrical core usually serves as the

moving probe. An alternating current is passed through the center coil and, as the core moves,

voltages are induced in the outer coils. These voltages are used to determine the core displacement

(http://en.wikipedia.org/wiki/Linear_variable_differential_transformer).
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z ’ 0:13
2p ¼ 0:02, or 2%. Third, the uncertainty in this value is determined using

Eq. 2.71.

uc zð Þ ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:012

0:932
þ 0:012

0:822

s
¼ 0:002

This combined standard uncertainty represents one standard deviation of the

mean value of z. We can interpret it this way. For a normal (or Gaussian) distribu-
tion of z values, we would expect subsequent measurements to appear within the

interval of �0.002 about the mean value 68.2% of the time. For (approximately) a

95% level of confidence, we would expand this interval to � 2uc zð Þ ¼ 0:004.
Before moving to Sect. 2.5 and unstable behavior, let’s return to the Argand

diagram and compare the undamped and damped cases. The undamped free vibra-

tion response described by xðtÞ ¼ Xu cos ontþ fuð Þ is shown in Fig. 2.32, where

fu ¼ tan�1 � _x0
onx0

� �
and Xu ¼ x0

cos fuð Þ (the u subscript represents “undamped”). With

the addition of damping, the response is xðtÞ ¼ Xde
�zont cos odtþ fdð Þ, where

fd ¼ tan�1 �zonx0� _x0
odx0

� �
and Xd ¼ x0

cos fdð Þ (the d subscript represents “damped”).

The damped case is pictured in Fig. 2.33 for comparison purposes. Because the

response decays over time, the vector length decreases and the tip traces a “spiral”

pattern.

2.5 Unstable Behavior

For the single degree of freedom damped oscillator, we detailed the solution to

the equation of motion m€xþ c _xþ kx ¼ 0 with the initial conditions xð0Þ and _xð0Þ.
We discussed four possible scenarios based on the damping ratio: z< 1

(underdamped); z ¼ 0 (no damping); z ¼ 1 (critically damped); and z> 1

(overdamped). For z< 1, we saw responses of the type shown in Fig. 2.34. These

decaying responses are called asymptotically stable because they exponentially

Rigid 
boundary 

Cantilever 
beam 

LVDT 

Fig. 2.31 By the Numbers
2.4 – measurement of free

oscillation for a cantilever

beam using an LVDT
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approach zero (the equilibrium position) as time progresses. For the z ¼ 0 response

in Fig. 2.35, the behavior is marginally stable; the response neither grows nor

decays. The z ¼ 1 and z> 1 cases are also stable. Like the z< 1 case, these

responses approach the equilibrium position as time increases.

What if the response does not approach the equilibrium position? This is called

unstable behavior. We will discuss two types: flutter instability (or self-excited

vibration) and divergent instability.

2.5.1 Flutter Instability

Let’s again consider the equation of motion m€xþ c _xþ kx ¼ 0. For positive mass

values (m> 0), unstable behavior is obtained if c or k are less than zero. This is

referred to as negative damping or stiffness, respectively. This unstable behavior

leads to oscillatory motion that grows, rather than decays, over time. It is referred to

as flutter instability or self-excited vibration.

x 

–Xu +Xu

x = Xu cos (wnt+fu)

Xu

Re 

Im

2π

Arrow pictured
at t = 0. 

wn

fu

Xu cos (fu)

wnt

Fig. 2.32 Argand diagram

for undamped free

vibration response

xðtÞ ¼ Xu cos ontþ fuð Þ
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–Xd +Xd

x = Xde
−zwntcos (wdt + fd)

Xd

x 

Re 

Im Arrow pictured
at t = 0. 

2π

wd

fd

Xd cos (fd)

wnt

Fig. 2.33 Argand diagram for damped free vibration response xðtÞ ¼ Xde
�zont cos odtþ fdð Þ
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t (s)
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m
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Fig. 2.34 By the Numbers 2.5 – stable behavior (c ¼ 1.1clim)
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Consider a structure moving through a fluid, such as an aircraft wing moving

through the air, that can be modeled as a single degree of freedom system with a

velocity-dependent aerodynamic force, f ¼ g _x, acting on it (Inman 2001). The

equation of motion is:

m€xþ c _xþ kx ¼ g _x; (2.92)

where we will specify that m, c, k, and g are all positive. Rewriting this equation

yields m€xþ c� gð Þ _xþ kx ¼ 0. Now we have two possibilities for the effective

damping coefficient, c� g. If c� g> 0, then z ¼ c�g
2
ffiffiffiffi
km

p > 0 and we obtain stable

behavior. However, if c� g< 0, then z< 0 and the response grows exponentially

over time (flutter). If c� g ¼ 0, the system is marginally stable.

While we have only considered analytical solutions to the differential equations

of motion so far, let’s now solve Eq. 2.92 numerically. We will implement Euler
integration in a time-domain simulation to determine the system behavior for

various c� g values.
The simulation is carried out in small time steps, dt. Because we are numerically

integrating the system equation of motion to determine the resulting vibration, care

must be exercised in selecting dt. If the value is too large, inaccurate results are

obtained. As a rule of thumb, it is generally acceptable to set dt to be at least

ten times smaller than the period corresponding to the highest natural frequency

in the system’s dynamic model.

0 0.5 1 1.5 2
–5

0

5

t (s)

x 
(m

m
)

Fig. 2.35 By the Numbers 2.5 – flutter instability (c ¼ 0.9clim)
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Given the equation of motion m€xþ c� gð Þ _xþ kx ¼ 0, the acceleration in the

current simulation time step is determined using:

€x ¼ � c� gð Þ _x� kx

m
;

where the velocity, _x, and position, x, from the previous time step are used (for the

first time step, they are set equal to the initial conditions). The velocity for

the current time step is then determined by Euler integration:

_x ¼ _xþ €x � dt;

where the velocity on the right-hand side of the equation is retained from the

previous time step and used to update the current value (on the left-hand side of

the equation). The current velocity is then applied to determine the current dis-

placement according to:

x ¼ xþ _x � dt:

Again, the displacement on the right-hand side of the equation is retained from

the previous time step. Finally, the time-dependent displacement can be written to a

vector, y, as:

yn ¼ x;

where the n subscript on y indicates the time step. This is used to simplify the “book

keeping” in the MATLAB® program; see By the Numbers 2.5 and MATLAB® MOJO 2.3.

The corresponding time is tn ¼ n � dt.

By the Numbers 2.5

Let’s choose the following parameters for Eq. 2.92: m ¼ 500 kg, k ¼ 1 � 107 N/m,

and g ¼ 1 � 104 N-s/m with initial conditions of xð0Þ ¼ 1� 10�3 m and _xð0Þ ¼ 0.

At the limit of stability, c� g ¼ 0. Therefore, for a given g value, the associated

limiting c value is clim ¼ g. In this case, clim ¼ 1� 104 N-s/m. For c > clim, the
system is stable. If c < clim, flutter occurs. Using the code provided in MATLAB®

MOJO 2.3, the results shown in Figs. 2.34 and 2.35 were obtained. In Fig. 2.34, the

system is stable with c ¼ 1.1clim. Unstable results are seen in Fig. 2.35, where

c ¼ 0.9clim. Exponentially increasing oscillatory behavior is observed. For these

figures, the response is plotted over 50 periods of vibration, t ¼ 1
fn
¼ 2p

ffiffiffi
m
k

p ¼
0:044 s, using a time step of dt ¼ t

20
¼ 0:0022 s.
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MATLAB® MOJO 2.3
% matlab_mojo_2_3.m

clc
close all
clear all

% Define parameters
m = 500;                        % kg
k = 1e7;                        % N/m
gamma = 1e4;                    % N-s/m
clim = gamma;                   % N-s/m
fn = 1/(2*pi)*sqrt(k/m);        % Hz
tau = 1/fn;                     % s
c = 0.9*clim;

% Define simulation variables
dt = tau/20;      % sec/step
steps = round(50*tau/dt);

% Euler integration initial conditions
x = 1e-3;                       % m
dx = 0;                         % m/s

% Initialize final position and time vectors
y = zeros(1, steps);
time = zeros(1, steps);

for cnt = 1:steps
ddx = (-(c - gamma)*dx - k*x)/m;            % m/s^2
dx = dx + ddx*dt;                           % m/s
x = x + dx*dt;                              % m

% Write results to vectors
y(cnt) = x;                        % m
time(cnt) = cnt*dt;                         % s

end

figure(1)
plot(time, y*1e3, 'k')
xlim([0 max(time)]) 
ylim([-5 5])
set(gca,'FontSize', 14)
xlabel('t (s)')
ylabel('x (mm)')

2.5.2 Divergent Instability

In order to model and simulate divergent instability, we will use the inverted
pendulum, composed of a mass, m, supported by a massless rod of length, l, that
rotates about the frictionless pivot, O. The rod is held in its vertical equilibrium

position by springs and dampers as shown in Fig. 2.36. The free body diagram for
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a rotation, y, of the mass/rod counterclockwise from the equilibrium position is

provided in Fig. 2.37. The forces that need to be considered include:

• the gravity force, mg
• the two spring forces, kd, where d ¼ l

2
sin yð Þ is the horizontal deflection due to

rotation of the rod as shown in Fig. 2.38

• the two viscous damping forces, c _d, where _d ¼ dd
dt ¼ l

2
cos yð Þ � _y is the horizontal

velocity

• the reaction forces at the pivot in the horizontal, Rx, and vertical, Ry, directions.

In order to sum moments, M, about O, the forces can be redrawn to give the

components perpendicular and parallel to the massless rod. Only the perpendicular

kk

c c 

m Massless rod
(length is l)

θ

2
l

Fig. 2.36 Inverted pendulum

mg 

θ

cd kd cdkd

Rx

Ry

O 

Fig. 2.37 Free body diagram for inverted pendulum

70 2 Single Degree of Freedom Free Vibration



www.manaraa.com

components need to be considered in the moment sum and, because we are

summing about O, the reaction components may be neglected. The free body

diagram is shown in Fig. 2.39, where d’Alembert’s inertial moment, J€y ¼ ml2€y,
with mass moment of inertia, J, is also included so that

P
MO ¼ 0.

Using Fig. 2.39, the moment sum is:

ml2€yþ 2c _d
� �

cos yð Þ l
2
þ 2kdð Þ cos yð Þ l

2
� mg sin yð Þl ¼ 0:

Substituting for d and _d gives:

ml2€yþ 2c
l

2
cos yð Þ � _y

� �
cos yð Þ l

2
þ 2k

l

2
sin yð Þ

� �
cos yð Þ l

2
� mg sin yð Þl ¼ 0:

For small rotations, sin yð Þ � y and cos yð Þ � 1. Substituting these approxi-

mations and combining terms yields:

ml2€yþ c
l2

2
_yþ k

l2

2
� mgl

� �
y ¼ 0:

If k l2

2
� mgl<0, the effective stiffness is negative and divergent unstable behavior

is obtained. In this situation, the motion grows without bound and no oscillation

occurs when the pendulum is disturbed from its equilibrium position. Physically, this

δ

θ

2
l

Fig. 2.38 Relationship

between d and y

Rx

Ry

θ

O 

θ
(2kd)cos(q )

θ(2cd)cos(q )

mg sin(q )
mg cos(q )

ml2q

Fig. 2.39 Free body diagram

with force components

perpendicular and parallel to

the massless rod. The

d’Alembert inertial moment

is also included
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means that the spring force is insufficient to counteract gravity and the pendulum

simply falls over for nonzero initial conditions. However, if k l2

2
� mgl> 0, the

pendulum oscillates around its equilibrium position when disturbed from equilib-

rium and the response eventually decays to zero due to the viscous dampers. The

limiting spring stiffness is found using klim
l2

2
� mgl ¼ 0. Rewriting gives klim ¼ 2mg

l .

If k< klim, divergent instability occurs.

By the Numbers 2.6

Consider the inverted pendulum in Fig. 2.36 with m ¼ 0.5 kg, c ¼ 1 N-s/m, and

l ¼ 0.3 m. The limiting spring stiffness is klim ¼ 2 0:5ð Þ9:81
0:3 ¼ 32:7 N/m. For initial

conditions of yð0Þ ¼ 5� and _yð0Þ ¼ 0, let’s determine the response yðtÞ using Euler
integration. As with the aircraft wing example, the first step is to solve the equation

of motion for the acceleration term.

€y ¼
c l2

2
_yþ k l2

2
� mgl

� �
y

ml2

The angular velocity of the pendulum for the current time step is then determined by:

_y ¼ _yþ €y � dt;

where the angular velocity on the right-hand side of the equation is the value from

previous time step. This new velocity is then used to calculate the current angle.

y ¼ yþ _y � dt
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Fig. 2.40 By the Numbers 2.6 – divergent instability for the inverted pendulum with k ¼ 0:99klim
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Using the code provided in MATLAB® MOJO 2.4, the results displayed in

Figs. 2.40–2.42 were obtained for three k values:

• k ¼ 0:99klim
• k ¼ klim
• k ¼ 10klim:
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Fig. 2.41 By the Numbers 2.6 – marginal stability for the inverted pendulum with k ¼ klim
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Fig. 2.42 By the Numbers 2.6 – asymptotic stability for the inverted pendulum with k ¼ 10klim
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In Fig. 2.40, the system exhibits divergent instability with k ¼ 0:99klim. The
pendulum mass simply falls in the direction of the initial angular offset. Marginal

stable results are seen in Fig. 2.41, where k ¼ klim. There is no mass rotation

because the spring restoring force exactly offsets the gravity force. Exponentially

decaying oscillatory behavior is observed in Fig. 2.42, where k ¼ 10klim. In this

asymptotically stabile case, the pendulum’s angular position oscillates about the

equilibrium position (zero rotation). For these figures, the response is plotted over

2,000 steps using a time increment of dt ¼ 0:005 s.

MATLAB
®

 MOJO 2.4 
% matlab_mojo_2_4.m

clc
close all
clear all

% Define parameters
m = 0.5;                        % kg
c = 1;                          % N-s/m
g = 9.81;                       % m/s^2
l = 0.3;                        % m
klim = 2*m*g/l;                 % N/m
k = 0.99*klim;

% Define simulation variables
dt = 0.005;       % sec/step
steps = 2000;

% Euler integration initial conditions
theta = 5*pi/180;               % rad
dtheta = 0;                     % rad/s

% Initialize final theta vector and time vector
th = zeros(1, steps);
time = zeros(1, steps);

for cnt = 1:steps
    ddtheta = (-(c*l^2/2)*dtheta-(k*l^2/2-m*g*l)*theta)/(m*l^2);   % rad/s^2
    dtheta = dtheta + ddtheta*dt;               % rad/s
    theta = theta + dtheta*dt;                  % rad

    % Write results to vectors
    th(cnt) = theta;                            % rad
    time(cnt) = cnt*dt;                         % s
end

figure(1)
plot(time, th*180/pi, 'k')
xlim([0 max(time)]) 
ylim([-15 15])
set(gca,'FontSize', 14)
xlabel('t (s)')
ylabel('\theta (deg)')
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2.6 Free Vibration Measurement

To conclude this chapter, let’s introduce the beam experimental platform (BEP) that
we will use to demonstrate various concepts throughout this text. The design

dimensions and materials are provided in Appendix A. A photograph of the

measurements setup is shown in Fig. 2.43. The 12.7-mm diameter steel rod is

clamped in the base with an overhang length of 125 mm. An accelerometer is

attached to the cantilever beam’s free end. This is a piezoelectric measurement

transducer that gives a voltage which is proportional to acceleration. We will

discuss it in more detail in Sect. 7.3.3. The rod was disturbed from equilibrium

by a light tap from a small hammer and the resulting vibration was recorded. A plot

of the acceleration, a, versus time, t, is provided in Fig. 2.44, where the hammer

impact was applied at 0.005 s. We see that the response resembles the underdamped

free vibration results we have already studied; it decays exponentially over time.

However, there are also some differences. It does not uniformly decay to zero; in

fact, it seems to grow and decrease periodically within the overall damping

envelope. This is because there are actually multiple natural frequencies of the

continuous beam excited simultaneously by the hammer tap. To model this behav-

ior, we need to consider multiple degrees of freedom. As we move forward, we will

discuss both multiple degree of freedom systems and modeling techniques for

continuous beams.

Fig. 2.43 Photograph of free vibration measurement using the BEP
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Chapter Summary

• The lumped parameter model, composed of a mass (located at each coordinate)

that is supported by massless springs and/or dampers, can be used to represent

physical systems.

• D’Alembert’s principle can be used to represent a dynamic model as a static

system by including the inertial force(s) or moment(s) in the free body diagram.

• A system’s characteristic equation is used to determine its natural frequency(s).

• Initial conditions are used to solve the differential equation of motion and

determine the time-domain response for free vibration.

• When applying an energy-based approach, the expressions for kinetic and

potential energy are used to identify the equation of motion for a system.

• An equivalent spring can be developed for springs in series and springs in

parallel.

• The Duffing spring, which includes a cubic nonlinearity, can be used to describe

the behavior of nonlinear systems.

• Three primary damping models are viscous, Coulomb, and solid damping.

• The dimensionless damping ratio, z, is used to describe the behavior of damped

systems.

• For underdamped systems, where z< 1, the response is vibratory with a magni-

tude that decays exponentially over time.

• For overdamped systems, where z> 1, there is no vibration.

• Matrix inversion can be used to solve linear systems of equations.

• The logarithmic decrement, which is determined from measurements of free

vibration, can be used to estimate the damping ratio.
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Fig. 2.44 Tip acceleration for the BEP due to a hammer tap disturbance at t ¼ 0.005 s
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• All measurement results include uncertainty. Given an equation for the value in

question (expressed as a function of other measured inputs), the uncertainty

of that value can be determined by a Taylor series expansion of the equation.

• Two types of instability are: (1) flutter or self-excited vibration; and (2) diver-

gent instability.

• The equation of motion can be solved numerically using Euler integration.

• An accelerometer can be used to measure the vibration of structures.

Exercises

1. For a single degree of freedom spring–mass system with m ¼ 1 kg and k ¼
4 � 104 N/m, complete the following for the case of free vibration.

(a) Determine the natural frequency in Hz and the corresponding period of

vibration.

(b) Given an initial displacement of 5 mm and zero initial velocity, write an

expression for the time response of free vibration using the following form:

xðtÞ ¼ X1e
iont þ X2e

�iont mm

(c) Plot the first ten cycles of motion for the result from part (b).

2. For a single degree of freedom spring–mass system, complete the following.

(a) If the free vibration is described as xðtÞ ¼ A cos ontþ Fcð Þ, determine

expressions for A and Fc if the initial displacement is x0 and the initial

velocity is _x0.
(b) If the free vibration is described as xðtÞ ¼ A cos ontð Þ þ B sin ontð Þ, deter-

mine expressions for A and B if the initial displacement is x0 and the initial
velocity is _x0.

3. The differential equation of motion for a cylinder rolling on a concave cylin-

drical surface is €yþ 2
3

g
R�r y ¼ 0, where g is the gravitational constant.

R 
r 

θ

Fig. P2.3 Cylinder rolling

on a concave cylindrical

surface
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(a) Write the expression for the natural frequency, on (rad/s).

(b) If the free vibration is described as yðtÞ ¼ A sin ontþ Fsð Þ, determine

expressions for A and Fs if the initial angle is y0 and the initial angular

velocity is _y0.
(c) If R ¼ 200 mm, r ¼ 10 mm, y0 ¼ 5� ¼ 0.087 rad, and _y0 ¼ 0, plot yðtÞ

(deg) using the function from part b for the time interval from t ¼ 0 to 5 s in

steps of 0.005 s.

4. For a single degree of freedom spring–mass–damper system with m ¼ 1 kg,

k ¼ 4�104 N/m, and c ¼ 10 N-s/m, complete the following for the case of free

vibration.

(a) Calculate the natural frequency (in rad/s), damping ratio, and damped

natural frequency (in rad/s).

(b) Given an initial displacement of 5 mm and zero initial velocity, write the

expression for the underdamped, free vibration in the form

xðtÞ ¼ e�zont A cos odtð Þ þ B sin odtð Þð Þ mm.

(c) Plot the first ten cycles of motion.

(d) Calculate the viscous damping value, c (in N-s/m), to give the critically

damped case for this system.

5. For a single degree of freedom spring–mass–damper system with m ¼ 0.2 lbm,

k ¼ 2.5�103 lbf/in., c ¼ 10.92 lbf-s/ft, x0 ¼ 0.1 in., and _x0 ¼ 0, complete the

following for the case of free vibration.

(a) Determine the equivalent spring constant (in lbf/in) for the spring configu-

ration shown in the figure.

(b) Determine the force (in lbf) required to cause the initial displacement of 0.1

in. (assume the system was at static equilibrium prior to introducing the

initial displacement).

(c) Calculate the damping ratio. You will need the units correction factor:

(32.2 ft-lbm)/(lbf-s
2). Is this system underdamped or overdamped?

(d) Calculate the damped natural frequency (in Hz).

k 

2k 

k 

c 

m x Fig. P2.5 Single degree of

freedom spring–mass–damper

system under free vibration
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6. For a single degree of freedom spring–mass–damper system under free

vibration, determine the values for the mass, m (kg), viscous damping coeffi-

cient, c (N-s/m), and spring constant, k (N/m), given the following information:

• the damping ratio is 0.1

• the undamped natural frequency is 100 Hz

• the initial displacement is 1 mm

• the initial velocity is 5 mm/s

• if the system was critically damped, the value of the damping coefficient

would be 586.1 N-s/m.

7. For a single degree of freedom spring–mass–damper system under free vibra-

tion, the following information is known: m ¼ 2 kg, k ¼ 1�106 N/m, c ¼
500 N-s/m, x0 ¼ 4 mm, and _x0 ¼ 0 mm/s.

Determine the corresponding expression for velocity (mm/s) if position is

given in the form xðtÞ ¼ Ae�zont cos odtþ ’cð Þ. Numerically evaluate all

coefficients and constant terms in your final expression.

8. The requirement for small features on small parts has led to increased demands

on measuring systems. One approach for determining the size of features (such

as a hole’s diameter) is to use a probe to touch the surface at several locations

(e.g., points on the hole wall) and then use these coordinates to calculate

the required dimension. To probe small features, small probes are required.

However, at small size and force scales, intermolecular forces can dominate.

An example is the interaction between very small, flexible probes and

surfaces. As shown in Fig. P2.8, a 72-mm diameter probe tip comes into contact
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Fig. P2.8 Probe displacement as a function of the axis position
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with a measurement surface (1) and the probe begins to deflect. The attractive

(van der Waals) force between the probe and surface causes the tip to “stick”

to the surface as it is retracted after contact (2). The motion is provided by an

axis which moves the probe relative to the surface. Once the retraction force on

the probe overcomes the attractive force, the probe is released from the surface

(3) and it oscillates under free vibration conditions. Given the probe’s free

vibration response, determine the damping ratio using the logarithmic decre-

ment approach. The peaks from the free vibration response are provided in

Table P2.8. (The data in Fig. P2.8 is courtesy of IBS Precision Engineering,

Eindhoven, The Netherlands.)

9. If the free vibration of a single degree of freedom spring–mass system is

described as xðtÞ ¼ A sin ontþ Fsð Þ, determine expressions for A and Fs if

the initial displacement is x0 and the initial velocity is _x0.
10. For a single degree of freedom spring–mass–damper system, the free vibration

response shown in the Fig. P2.10a was obtained due to an initial displacement

with no initial velocity.
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Fig. P2.10a Free vibration response for a single degree of freedom spring–mass–damper

system

Table P2.8 Peak values for probe-free vibration

Peak label Peak value (mm)

a 0.60

b 0.38

c 0.29

d 0.16
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(a) Determine the damping ratio using the logarithmic decrement. Figure P2.10b,

which shows just the first few cycles of oscillation, is provided to aid in this

calculation.

(b) What was the initial displacement for this system?

(c) Determine the period of oscillation and corresponding damped natural

frequency (in Hz).

(d) If the system mass is 1 kg, determine the spring constant (in N/m).
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Chapter 3

Single Degree of Freedom Forced Vibration

Imagination decides everything.

– Blaise Pascal

3.1 Equation of Motion

Let’s continue our study of the lumped parameter spring–mass–damper model,

but now consider forced vibration. While the oscillation decays over time for

a damped system under free vibration, the vibratory motion is maintained at a

constant magnitude and frequency when an external energy source (i.e., a forcing

function) is present. In Fig. 3.1, a harmonic input force has been added to the model,

f ðtÞ ¼ Feiot, where o is the forcing frequency.

IN A NUTSHELL We have already seen that the complex

exponential notation can be used to represent sine and cosine

functions. The addition of the input force in Fig. 3.1 simply means

that the system is being excited by a sinusoidal force. Additionally,

because any periodic signal can be expressed by a sum of sine

and cosine functions with different frequencies and amplitudes and because the

system is linear and superposition can be applied, the discussion that follows

applies to systems excited by any periodic force.

The free-body diagram (including the inertial force) is also provided in Fig. 3.1.

By summing the forces in the x direction,
P

fx ¼ 0, the equation of motion is

determined:

m€xþ c _xþ kx ¼ Feiot; (3.1)

where viscous damping is included in the model.

T.L. Schmitz and K.S. Smith, Mechanical Vibrations: Modeling and Measurement,
DOI 10.1007/978-1-4614-0460-6_3, # Springer Science+Business Media, LLC 2012
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3.2 Frequency Response Function

The total solution to the forced vibration equation of motion (Eq. 3.1) has two parts:

(1) the homogeneous, or transient, solution; and (2) the particular, or steady-state,
solution. The transient portion is the free vibration response, m€xþ c _xþ kx ¼ 0,

and, as we saw in Chap. 2, it rapidly decays for damped systems. The steady-

state portion remains after the transient has attenuated and it persists as long as

the force is acting on the system. The particular solution takes the same form as the

forcing function after the transients are damped out. The resulting vibration has

the same frequency as the harmonic force. Specifically, given the force f ðtÞ ¼ Feiot,
the corresponding steady-state response can be written as xðtÞ ¼ Xeiot. Given this

form for the position, the velocity is _xðtÞ ¼ ioXeiot and the acceleration is

€xðtÞ ¼ ioð Þ2Xeiot ¼ �o2Xeiot. Substituting these expressions in Eq. 3.1, we obtain:

� mo2Xeiot þ iocXeiot þ kXeiot ¼ Feiot: (3.2)

Grouping terms gives:

�mo2 þ iocþ k
� �

Xeiot ¼ Feiot: (3.3)

This relates the force to the resulting vibration as a function of the forcing

frequency, o. Both sides of Eq. 3.3 include eiot, so we can eliminate it. We are

now considering the response in the frequency domain rather than the time

domain since t no longer appears in the equation. Let’s rewrite Eq. 3.3 so that we

have the ratio of the output (the complex-valued vibration, X) to the input

m

k c

x(t) 

mx(t) 

Feiwt

Feiwt

mx cx kx

Fig. 3.1 Spring–mass–damper model with a harmonic input force. The free-body diagram is

included
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(the real-valued force, F). This is referred to as the frequency response function
(FRF) for physical systems.

X

F
oð Þ ¼ G oð Þ ¼ 1

�mo2 þ iocþ k
(3.4)

IN A NUTSHELL We see in Eq. 3.4 that the relationship

between the exciting force and the resulting vibration depends

not only on the system parameters (m, k, and c) and amplitude of

the exciting force (F), but also on the frequency of the excitation (o).

In the Laplace domain (s ¼ sþ io), frequencies from negative infinity to

positive infinity (�1 � o � þ1) are considered. In this case, the ratio X
F ðsÞ is

referred to as the transfer function for the system. We can obtain the transfer

function from the forced vibration equation of motion, m€xþ c _xþ kx ¼ f ðtÞ, using
the Laplace transforms of xðtÞ and f ðtÞ. These are LxðtÞ ¼ XðsÞ ¼ R1

0
e�stxðtÞdt and

Lf ðtÞ ¼ FðsÞ ¼ R1
0

e�stf ðtÞdt. We also need the velocity:

L _xðtÞ ¼ sXðsÞ � xð0Þ

and acceleration:

L€xðtÞ ¼ s2XðsÞ � sxð0Þ � _xð0Þ:

Substituting into the equation of motion gives:

m s2XðsÞ � sxð0Þ � _xð0Þ� �þ c sXðsÞ � xð0Þð Þ þ kXðsÞ ¼ FðsÞ:

For the transfer function, we are considering the steady-state response so we

can neglect the transients and let xð0Þ ¼ _xð0Þ ¼ 0. This yields:

ms2 þ csþ k
� �

XðsÞ ¼ FðsÞ;

which can be rewritten as the transfer function:

X

F
ðsÞ ¼ 1

ms2 þ csþ k
:

For our purposes, however, we are interested in the measurement and subsequent

modeling of physical systems. Therefore, we will limit our discussions to the FRF,

which considers only positive frequencies and the system-specific damping.
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IN A NUTSHELL For those with a background in controls,

the FRF is a special case of the transfer function. The transfer

function is a surface (like a tent) above the s plane (i.e., the plane
with a s axis and an io axis). “Poles” (like tent poles) are where

that surface rises very high (to 1) and “zeroes” are where the

tent touches the ground (s plane). The FRF is a slice through the tent fabric

along the axis where s ¼ 0 (the frequency axis).

Let’s check the zero frequency (static or DC) case for Eq. 3.4. Substituting

o ¼ 0, we obtain:

X

F
ð0Þ ¼ Gð0Þ ¼ 1

�mð0Þ2 þ ið0Þcþ k
¼ 1

k
:

This is simply Hooke’s law that we discussed in Sect. 2.1. For the static case, we

see that F ¼ kX. In this instance, the response X is not complex; it has no imaginary

component. Let’s now rewrite the FRF to express it as a function of the natural

frequency, on, and damping ratio, z, rather than m, c, and k.

G oð Þ ¼ 1

k � mo2 þ ioc
¼ 1

m

1
k
m � o2
� �þ i cmo

 !

From Chap. 2, we know that k
m ¼ on

2 and c
m ¼ 2zon. Substituting gives:

G oð Þ ¼ 1

m

1

on
2 � o2ð Þ þ i2zono

� �
:

Multiply this result by k
k to obtain:

G oð Þ ¼ 1

k

k

m

1

on
2 � o2ð Þ þ i2zono

� �
¼ 1

k

on
2

on
2 � o2ð Þ þ i2zono

� �
:

It is common to rewrite this equation using the frequency ratio, r ¼ o
on
, which

expresses how close the excitation frequency is to the natural frequency of the

system. Dividing the numerator and denominator of the term in parentheses by on
2,

the new FRF form is:

G oð Þ ¼ 1

k

1

1� o
on

� �2� �
þ i2z o

on

� �
0
BB@

1
CCA: (3.5)

Substituting the frequency ratio r for o
on

yields the more compact FRF equation:

GðrÞ ¼ 1

k

1

1� r2ð Þ þ i2zr

� �
: (3.6)
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In Eq. 3.6, r ¼ 1 represents a special case. In this instance:

Gð1Þ ¼ 1

k

1

1� ð1Þ2
� �

þ i2zð1Þ

0
@

1
A ¼ 1

k

1

i2z

� �
:

This gives the largest value of GðrÞ for a fixed value of z. It is called resonance.
Physically, this means that when a system is forced at its natural frequency

(o ¼ on), the steady-state response is largest and its amplitude depends on the

system stiffness and damping ratio. Intuitively, a larger stiffness or damping ratio

gives a smaller response. Note that the resonant response is purely imaginary.

IN A NUTSHELL The resonant response, G r ¼ 1ð Þ, is not
imaginary in the sense that it does not exist. “Purely imaginary”

means that if the excitation is represented by a sine function, then the

resulting vibration at resonance is represented by a cosine function.

The force and vibration reach their maximum values at different

times, and, at resonance, the force is maximum when the displacement is zero.

Rather than leaving the FRF in the form shown in Eq. 3.6, let’s rationalize

by multiplying the numerator and denominator by the complex conjugate of the

denominator.

GðrÞ ¼ 1

k

1

1� r2ð Þ þ i2zr
� 1� r2ð Þ � i2zr
1� r2ð Þ � i2zr

� �
¼ 1

k

1� r2ð Þ � i2zr

1� r2ð Þ2 þ 2zrð Þ2
 !

(3.7)

This function has both real and imaginary parts. The real part is:

Re GðrÞð Þ ¼ 1

k

1� r2ð Þ
1� r2ð Þ2 þ 2zrð Þ2

 !
(3.8)

and the imaginary part is:

Im GðrÞð Þ ¼ 1

k

�2zr

1� r2ð Þ2 þ 2zrð Þ2
 !

: (3.9)

We can also express Eq. 3.7 in terms of magnitude and phase. This relates to the
vector description we have discussed previously (see Figs. 2.4 and 2.5, for example).

Figure 3.2 demonstrates the relationships between the real and imaginary parts and

the magnitude and phase. The magnitude is calculated according to:

GðrÞj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re GðrÞð Þð Þ2 þ Im GðrÞð Þð Þ2

q
¼ 1

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1� r2ð Þ2 þ 2zrð Þ2
s

; (3.10)
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and the phase1 is determined using:

fðrÞ ¼ tan�1 Im GðrÞð Þ
Re GðrÞð Þ
� �

¼ tan�1 �2zr
1� r2

� �
: (3.11)

Physically, the magnitude gives the size of the vibration response and the phase

describes how much the vibration lags the harmonic, oscillating force. To better

understand the phase lag, consider the Slinky® – a helical spring toy invented

by Richard James in the 1940s (http://en.wikipedia.org/wiki/Slinky). By holding

the Slinky® vertically and attaching several coils at the bottom together (using a

rubber band, for example), you can approximate a spring–mass–damper system

(although the damping is quite low). Now begin moving your hand up and down

very slowly. You will observe that the “mass” at the bottom basically follows your

hand’s motion. As you increase the frequency of your hand’s oscillation, however,

you will see that the mass exhibits a different behavior; now, its motion directly

opposes your hand’s motion. For the low forcing frequency, the phase lag is near

zero. For the higher frequency, the phase lag is close to 180� (i.e., f � �180� and
the mass’s motion is out of phase with your hand’s motion). The sharp transition

between “in phase” and “out of phase” vibration is observed due to the low damping

in the system.

As an alternative to Eqs. 3.10 and 3.11, the magnitude and phase can be

expressed in terms of the model parameters m, k, and c. See Eqs. 3.12 and 3.13.

GðrÞj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

k � mo2ð Þ2 þ coð Þ2
s

(3.12)

f ¼ tan�1 �co
k � mo2

� �
(3.13)

1Note that the tangent function exhibits quadrant dependence in the complex plane. In MATLAB
®

the atan2 function can be used to respect this quadrant-dependent behavior.

Real 

Imag

f(r)

Im(G(r))

Re(G(r))

G(r)

Fig. 3.2 Vector description

of the FRF’s magnitude and

phase
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3.3 Evaluating the Frequency Response Function

Let’s now plot the FRF as a function of the frequency ratio, r (or, equivalently, the
forcing frequency, o). Figure 3.3 shows the FRF magnitude from Eq. 3.10. Results

are provided for z values of 0.01, 0.05, and 0.1 with k ¼ 1� 106 N/m. We see

that the peak height is reduced with increased damping. This “sharpness” of

the magnitude peak is sometimes described as the system Q (or quality factor).
A tall, sharp peak (low damping) represents a system with high Q. The Q can be

related to z as shown in Eq. 3.14.

Q ¼ 1

2z
(3.14)

In Fig. 3.3, the r ¼ 0 magnitude is G r ¼ 0ð Þj j ¼ X
F

		 		 ¼ 1
k ¼ 1� 10�6 m/N. This

DC result is independent of the damping ratio. For the resonant case where r ¼ 1:

G r ¼ 1ð Þj j ¼ 1

2kz
¼ 1

2 1� 106
� �

z
¼ 5� 10�7

z
:

The three peak values are {5� 10�5, 1� 10�5, and 5� 10�6} m/N.

The phase plot is typically provided in conjunction with the magnitude plot to

fully describe the FRF. The phase for the same system used in Fig. 3.3 is shown in

Fig. 3.4; the code used to produce Figs. 3.3 and 3.4 is included in MATLAB
®MOJO 3.1.

In Fig. 3.4, the phase at r ¼ 0 is f ¼ 0. This is the static result where there is no

phase lag between the displacement and force. At r ¼ 1 (resonance), the phase is

0 0.5 1 1.5 2
0

1

2

3

4

5
x 10–5

r

|G
(r

)|
 (

m
/N

)

ζ = 0.01
ζ = 0.05
ζ = 0.1

Fig. 3.3 Magnitude plot for underdamped systems (z ¼ 0.01, 0.05, and 0.1 with k ¼ 1� 106 N/m)
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f ¼ tan�1 2z
0

� � ¼ � p
2

rad ¼ �90�. For r � 1, the phase approaches –p rad

(�180�). This is the “out of phase” condition where the force reaches its minimum

value while the displacement reaches its maximum value. See the time-domain

representations of the force and displacement in Fig. 3.5.

Real Real 

φ
φ

tt

tt

f (t)

x (t)

Small r (w << wn)
Imag 

Large r (w >> wn)
Imag 

“In phase” “Out of phase” 

Fig. 3.5 Time-domain representations of phase between force and displacement for: (a) small r
and (b) large r (r � 1)
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–150

–100

–50

0

r

φ 
(d

eg
)

ζ  = 0.01
ζ  = 0.05
ζ  = 0.1

Fig. 3.4 Phase versus r plot for underdamped systems (z ¼ 0.01, 0.05, and 0.1 with

k ¼ 1� 106 N/m)
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MATLAB
®

 MOJO 3.1
% matlab_mojo_3_1.m

clc
clear all
close all

% define variables
r = 0:0.001:2;
k = 1e6;                % N/m

% define function
zeta1 = 0.01
mag1 = 1/k*(1./((1-r.^2).^2 + (2*zeta1*r).^2)).^0.5;
phase1 = atan2(-2*zeta1*r, (1-r.^2));

zeta2 = 0.05
mag2 = 1/k*(1./((1-r.^2).^2 + (2*zeta2*r).^2)).^0.5;
phase2 = atan2(-2*zeta2*r, (1-r.^2));

zeta3 = 0.1
mag3 = 1/k*(1./((1-r.^2).^2 + (2*zeta3*r).^2)).^0.5;
phase3 = atan2(-2*zeta3*r, (1-r.^2));

figure(1)
plot(r, mag1, 'k-', r, mag2, 'k:', r, mag3, 'k--')
set(gca,'FontSize', 14)
xlabel('r')
ylabel('|G(r)| (m/N)')
axis([0 2 0 5.2e-5])
legend('\zeta = 0.01', '\zeta = 0.05', '\zeta = 0.1')

figure(2)
plot(r, phase1*180/pi, 'k-', r, phase2*180/pi, 'k:', r, phase3*180/pi,

'k--')
set(gca,'FontSize', 14)
xlabel('r')
ylabel('\phi (deg)')
axis([0 2 -185 5])
legend('\zeta = 0.01', '\zeta = 0.05', '\zeta = 0.1')

IN A NUTSHELL The magnitude and phase representations show

how the forced vibration is related to the exciting force over a range

of frequencies. Let’s look at the vibration that results for a given

force amplitude as the frequency of the force changes. In all cases,

the frequency of the vibration is the same as the frequency of the

exciting force. When the excitation frequency is low, the force and displacement

go together and reach their maximum values at almost the same time. They are

“in phase.” As the frequency of the excitation frequency increases, the amplitude

of the displacement increases and the displacement begins to fall behind the

force (it reaches its peak value a little later than the force reaches its peak value).

At resonance (where the excitation frequency equals the natural frequency),

the amplitude of the displacement is at its largest value and the displacement

reaches its maximum when the force is zero. The force and displacement are phase
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shifted by 90�. As the excitation frequency continues to increase, the amplitude of

the displacement begins to decrease and the displacement lags even farther behind the

force. When the excitation frequency is very high, the amplitude of the displacement

becomes much smaller and the displacement reaches a positive maximum when the

force reaches a negative maximum. They are phase shifted by 180� (“out of phase”).

Next, let’s plot the real and imaginary parts of the FRF again as a function of

the frequency ratio. Using Eq. 3.8, we obtain Fig. 3.6 for z ¼ 0.01, 0.05, and 0.1

with k ¼ 1� 106 N/m. We see that, similar to the magnitude plot in Fig. 3.3, the

peak-to-peak height decreases with increasing damping. For the imaginary part

(Eq. 3.9), a similar trend is observed in Fig. 3.7. The code used to produce Figs. 3.3

and 3.4 is provided in MATLAB
® MOJO 3.2.

MATLAB
®
 MOJO 3.2

% matlab_mojo_3_2.m

clc
clear all
close all

% define variables
r = 0:0.001:2;
k = 1e6;                % N/m

% define function
zeta1 = 0.01
real1 = 1/k*(1-r.^2)./((1-r.^2).^2 + (2*zeta1*r).^2);
imag1 = 1/k*(-2*zeta1*r)./((1-r.^2).^2 + (2*zeta1*r).^2);

zeta2 = 0.05
real2 = 1/k*(1-r.^2)./((1-r.^2).^2 + (2*zeta2*r).^2);
imag2 = 1/k*(-2*zeta2*r)./((1-r.^2).^2 + (2*zeta2*r).^2);

zeta3 = 0.1
real3 = 1/k*(1-r.^2)./((1-r.^2).^2 + (2*zeta3*r).^2);
imag3 = 1/k*(-2*zeta3*r)./((1-r.^2).^2 + (2*zeta3*r).^2);

figure(1)
plot(r, real1, 'k-', r, real2, 'k:', r, real3, 'k--')
set(gca,'FontSize', 14)
xlabel('r')
ylabel('Re(G(r)) (m/N)')
axis([0 2 -2.7e-5 2.7e-5])
legend('\zeta = 0.01', '\zeta = 0.05', '\zeta = 0.1')

figure(2)
plot(r, imag1, 'k-', r, imag2, 'k:', r, imag3, 'k--')
set(gca,'FontSize', 14)
xlabel('r')
ylabel('Im(G(r)) (m/N)')
axis([0 2 -5.5e-5 5e-6])
legend('\zeta = 0.01', '\zeta = 0.05', '\zeta = 0.1')
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For the single degree of freedom FRF that we are considering now, several

important points can be identified directly from the real and imaginary plots. As we

have already discussed, the zero frequency (r ¼ 0) response gives a value of 1
k for

the real part and zero for the imaginary part. At resonance (r ¼ 1), the real part is

x 10–5
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ζ = 0.01
ζ = 0.05
ζ = 0.1

Fig. 3.7 FRF imaginary part versus r plot for underdamped systems (z ¼ 0.01, 0.05, and 0.1 with

k ¼ 1� 106 N/m)
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Fig. 3.6 FRF real part versus r plot for underdamped systems (z ¼ 0.01, 0.05, and 0.1 with

k ¼ 1� 106 N/m)
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zero and the imaginary part reaches its minimum value of � 1
2kz . The maximum

real part value of approximately 1
4kz 1�zð Þ occurs at a frequency of r ¼ 1� z

(o ¼ on 1� zð Þ). At a frequency of r ¼ 1þ z (o ¼ on 1þ zð Þ), the minimum

real part is observed with a value of approximately � 1
4kz 1þzð Þ . We can also note

that the peak-to-peak value of the real part is the same as for the imaginary part: 1
2kz .

Summing up the absolute values of the real part maximum and minimum peaks,

we obtain:

1

4kz 1� zð Þ þ
1

4kz 1þ zð Þ ¼
1þ zð Þ þ 1� zð Þ
4kz 1� zð Þ 1þ zð Þ ¼

2

4kz 1� z2
� � � 1

2kz
:

This approximation is valid for small z values, which is typical for mechanical

structures. For example, even with 10% damping (z ¼ 0:1), z2 is only 0.01. These

frequencies and peaks are identified in Figs. 3.8 and 3.9.

Re(G(r)) 

1
k

r

1

1
4kz(1−z )

4kz(1+z )
1−

1 

1−z 1+z

2kz

Fig. 3.8 Summary of important points on FRF real part

Im(G(r))

r

1−

1 

2kz

Fig. 3.9 Summary of important points on FRF imaginary part
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By the Numbers 3.1

Consider the lumped parameter spring–mass–damper system displayed in Fig. 3.10.

The harmonic force, f ðtÞ ¼ Feiot, is acting on the system to produce forced

vibration. The system natural frequency is 500 Hz, the damping ratio is 0.1, and

the stiffness is 1 � 106 N/m.

First, given the system parameters fn, z, and k, we can determine m and c.
We obtain the mass using:

m ¼ k

2pfnð Þ2 ¼
1� 106

2p � 500ð Þ2 ¼ 0:1 kg:

The viscous damping ratio is c ¼ 2zmon ¼ 2 0:1ð Þ0:1 2p � 500ð Þ ¼ 63 N-s/m.

Let’s now sketch the magnitude and phase for this system. For the magnitude

plot, we can directly identify the magnitude at forcing frequency values of o ¼ 0

(r ¼ 0) and o ¼ on (r ¼ 1). At DC, the magnitude is 1
k ¼ 1

1�106
¼ 1� 10�6m=N

100 mm=100N. This means that we’d get a deflection of approximately the diame-

ter of a human hair if we apply a constant force of 100 N (or 22.5 lbf). At resonance,

where the forcing frequency is equal to the natural frequency, the magnitude is
1
2kz ¼ 1

2 1�106ð Þ0:1 ¼ 5� 10�6N/m. Note that the dynamic flexibility2 is five times

higher than the static flexibility for this system. At a higher frequency, say r ¼ 5

where the forcing frequency is f ¼ 5fn ¼ 5 � 500 ¼ 2;500 Hz, the magnitude is:

Gð5Þj j ¼ 1

1� 106

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1� 52ð Þ2 þ 2 0:1ð Þ5ð Þ2
s

¼ 4:2� 10�8 N/m ¼ 4:2mm=100 N:

Feiwt

m

k c

x(t)

fn = 500 Hz

k = 1×106 N/m

z= 0.1 

Fig. 3.10 By the Numbers
3.1 – the example spring-

mass-damper system and

single degree of freedom

model parameters are shown

2 Flexibility, or compliance, is the inverse of stiffness.
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Now the dynamic flexibility is ~24 times smaller than the static flexibility and

~120 times smaller than the resonant case. This emphasizes the strong dependence of

the steady-state response for dynamic systems on the (harmonic) forcing frequency.

The magnitude plot is provided in Fig. 3.11.

For the phase plot (Fig. 3.12), we know that the phase isf ¼ 0 ato ¼ 0 (r ¼ 0), it

is �90� at o ¼ on (r ¼ 1), and it approaches �180� for large forcing frequencies

(r values �1). Specifically, we calculate the following.

• For r ¼ 0, f r ¼ 0ð Þ ¼ tan�1 �2zr
1�r2

� � ¼ tan�1 0
1

� � ¼ 0:

• For r ¼ 1, f r ¼ 1ð Þ ¼ tan�1 �2z
0

� � ¼ �90�. Recognizing that the phase is the

inverse tangent of the ratio of the imaginary part to the real part, Fig. 3.13

demonstrates this result. Because the real part is zero and the imaginary part is

negative, the displacement lags the (real-valued) force by 90�.
• For r ¼ 5, f r ¼ 5ð Þ ¼ tan�1 �2 0:1ð Þ5

1�52

� �
. Here we have to exercise caution in

calculating the phase. If we simply input this ratio into a calculator and use the

tan�1 key/function, we would find that f ¼ 2:4� (or 0.04 rad). A positive phase

indicates that the displacement has somehow anticipated3 the force and is leading it

in time. This is not possible for our system, so this must not be the correct phase. The

error is due to the quadrant dependence of the inverse tangent. Figure 3.14 shows

that the correct phase is f ¼ � 180� 2:4ð Þ ¼ �177:6� ¼ �3:1 rad. In MATLAB
®,

the correct result of �3.1 rad is obtained using atan2(�2*0.1*5, 1�5^2).

0 1 2 3 4 5 6
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5
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)|
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m
/N
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Fig. 3.11 By the Numbers 3.1 – magnitude plot

3 Such anticipatory behavior would be exhibited by a noncausal system (Kamen 1990).
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Fig. 3.13 By the Numbers 3.1 – the displacement lags the force by 90� for r ¼ 1
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Fig. 3.14 By the Numbers 3.1 – the displacement lags the force by 177.6� for r ¼ 5
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Next, let’s look at the real and imaginary parts of the FRF. The real plot is

provided in Fig. 3.15. At o ¼ 0 (r ¼ 0), the value is:

Re Gð0Þð Þ ¼ 1

1� 106
1� 02ð Þ

1� 02ð Þ2 þ 2 0:1ð Þ0ð Þ2
 !

¼ 1� 10�6 m/N:

At o ¼ on (r ¼ 1), the value of the real part is:

Re Gð1Þð Þ ¼ 1

1� 106
1� 12ð Þ

1� 12ð Þ2 þ 2 0:1ð Þ1ð Þ2
 !

¼ 0:

At o ¼ 5on (r ¼ 5), the real part is:

Re Gð5Þð Þ ¼ 1

1� 106
1� 52ð Þ

1� 52ð Þ2 þ 2 0:1ð Þ5ð Þ2
 !

¼ �4:2� 10�8 m/N:

Let’s also determine the real part value at its peaks. For the maximum peak,

which occurs approximately at r ¼ 1� z ¼ 1� 0:1 ¼ 0:9, the value is:

Re G 0:9ð Þð Þ ¼ 1

1� 106
1� 0:92
� �

1� 0:92
� �2 þ 2 0:1ð Þ0:9ð Þ2

 !
¼ 2:8� 10�6 m/N:
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Fig. 3.15 By the Numbers 3.1 – real part of the FRF
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Note that this result can be approximated using 1
4kz 1�zð Þ . For the minimum

(negative) peak, which occurs at a frequency ratio of approximately 1þ z ¼
1þ 0:1 ¼ 1:1, the value is:

Re G 1:1ð Þð Þ ¼ 1

1� 106
1� 1:12
� �

1� 1:12
� �2 þ 2 0:1ð Þ1:1ð Þ2

 !
¼ �2:3� 10�6m/N:

Similarly, this result can be approximated using � 1
4kz 1þzð Þ :

To complete this example, let’s plot theArgand diagramor the real part of the FRF

versus the imaginary part of the FRF. The result is provided in Fig. 3.17, where the

points for r ¼ 0, r ¼ 1� z ¼ 1� 0:1 ¼ 0:9, r ¼ 1, and r ¼ 1þ z ¼ 1þ 0:1 ¼ 1:1
are identified by the open circles. For these points, the values of the real and

imaginary parts are given in Table 3.1.

We can see in Fig. 3.17 that the points for r ¼ 0.9 and 1.1 do not appear at the

Argand “circle” quadrants as we might have expected. They are, after all, supposed

to identify the maximum and minimum real part values. The reason for this

discrepancy is that using the frequency ratios r ¼ 1� z and r ¼ 1þ z, respectively,
to identify the maximum and minimum real part values is an approximation. We

can determine the actual r values by differentiating Eq. 3.8 with respect to r and
setting this result equal to zero.

d

dr

1

k

1� r2ð Þ
1� r2ð Þ2 þ 2zrð Þ2

 ! !
¼ 0 (3.15)
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Fig. 3.16 By the Numbers 3.1 – imaginary part of the FRF
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Computing the derivative in Eq. 3.15 yields:

1� r2ð Þ2 þ 2zrð Þ2
� �

�2rð Þ � 1� r2ð Þ 2 1� r2ð Þ �2rð Þ þ 2 2zrð Þ 2zð Þð Þ

1� r2ð Þ2 þ 2zrð Þ2
� �2 ¼ 0:

(3.16)

Expanding the numerator and canceling terms give an equation that is quadratic

in r2:

2r4 � 4r2 þ 2� 8z2
� � ¼ 0: (3.17)

We can obtain the roots, r1;2
2, of Eq. 3.17 using the quadratic equation:

r1;2
2 ¼

� �4ð Þ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4ð Þ2 � 4ð2Þ 2� 8z2

� �q
2ð2Þ ¼ 1	

ffiffiffiffiffiffiffiffiffi
64z2

p
4

¼ 1	 2z: (3.18)
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Fig. 3.17 By the Numbers 3.1 – Argand diagram. The frequency ratios in Table 3.1 are identified

by the circles. Clockwise from the top-right circle: r ¼ 0, 0.9, 1, 1.1, and 5

Table 3.1 By the Numbers 3.1
– values of the FRF real and

imaginary parts for various

frequency ratios (see Fig. 3.17)

r Re GðrÞð Þ (m/N) Im GðrÞð Þ (m/N)

0 1 � 10�6 0

0.9 2.8 � 10�6 �2.8 � 10�6

1 0 �5 � 10�6

1.1 �2.3 � 10�6 �2.4 � 10�6

5 �4.2 � 10�8 �1.7 � 10�9
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For our approximation of r ¼ 1	 z, the square of this expression gives:

r1
2 ¼ 1þ 2zþ z2

r2
2 ¼ 1� 2zþ z2: ð3:19Þ

For small z, the additional z2term at the end of the expressions in Eq. 3.19 is

negligible. However, as z increases, the error in this approximation becomes

evident – as seen in Fig. 3.17. Figure 3.18 shows the Argand diagram where the

same r values are identified using Eq. 3.18 (rather than the approximation). The

code used to generate this figures is provided in MATLAB
® MOJO 3.3.

If we look carefully at Fig. 3.18, we see that we are not quite done. In fact, the

r ¼ 1 point does not exactly identify the minimum value of the FRF imaginary part.

This is again an approximation; a good one, but an approximation nonetheless. We

can follow the same steps as before, but this time use Eq. 3.9 to determine the

proper r value.

d

dr

1

k

�2zr

1� r2ð Þ2 þ 2zrð Þ2
 ! !

¼ 0 (3.20)

Calculating the derivative gives:

1� r2ð Þ2 þ 2zrð Þ2
� �

�2zð Þ � �2zrð Þ 2 1� r2ð Þ �2rð Þ þ 2 2zrð Þ 2zð Þð Þ

1� r2ð Þ2 þ 2zrð Þ2
� �2 ¼ 0: (3.21)
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–2

–1

0

x 10–6

x 10–6Re(G(r)) (m/N)

Im
(G

(r
))

 (
m

/N
)

Fig. 3.18 By the Numbers 3.1 – Argand diagram. The frequency ratios determined using Eq. 3.18

are identified by the open circles. Clockwise from the top-right circle: r ¼ 0,
ffiffiffiffiffiffiffi
0:8

p
, 1,

ffiffiffiffiffiffiffi
1:2

p
, and 5
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Expanding the numerator and canceling terms yields:

3r4 þ 4z2 � 2
� �

r2 � 1 ¼ 0: (3.22)

Again using the quadratic equation, we determine the roots to be:

r1;2
2 ¼ 2� 4z2

� �	 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4 � z2 þ 1

p
6

: (3.23)

For z ¼ 0:1, substitution gives:

r1;2
2 ¼

2� 4 0:1ð Þ2
� �

	 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1ð Þ4 � 0:1ð Þ2 þ 1

q
6

¼ 1:96

6
	 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:9901

p

6
:

Using r2 ¼ 1:96
6

þ 4
ffiffiffiffiffiffiffiffiffiffi
0:9901

p
6

, the r value for the minimum imaginary part is 0.995,

rather than 1. Note, however, that as z approaches zero in Eq. 3.23, r approaches 1
(again using the positive root).

MATLAB®
 MOJO 3.3

% matlab_mojo_3_3.m

clc
clear all
close all

% define variables
r = 0:0.001:6;
k = 1e6;                % N/m

% define function
zeta1 = 0.1;
real1 = 1/k*(1-r.^2)./((1-r.^2).^2 + (2*zeta1*r).^2);
imag1 = 1/k*(-2*zeta1*r)./((1-r.^2).^2 + (2*zeta1*r).^2);

figure(1)
plot(real1, imag1, 'k-')
set(gca,'FontSize', 14)
xlabel('Re(G(r)) (m/N)')
ylabel('Im(G(r)) (m/N)')
axis([-2.5e-6 3e-6 -5.2e-6 5e-7])
hold on
grid
axis equal

r_points = [0 sqrt(1-2*zeta1) 1 sqrt(1+2*zeta1) 5];

for cnt = 1:length(r_points)
r1 = r_points(cnt);
real_points(cnt) = 1/k*(1-r1^2)/((1-r1^2)^2 + (2*zeta1*r1)^2);
imag_points(cnt) = 1/k*(-2*zeta1*r1)/((1-r1^2)^2 + (2*zeta1*r1)^2);

end

plot(real_points, imag_points, 'ko')
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By the Numbers 3.2

Let’s consider a second example, now with m ¼ 1 kg, c ¼ 500 N - s/m,

k ¼ 5� 107N/m, and f ¼ Feiot ¼ 1ei4500t N. See Fig. 3.19. The associated

natural frequency is on ¼
ffiffiffiffiffiffiffiffiffiffi
5�107

1

q
¼ 7; 071:1 rad/s and the damping ratio is

z ¼ 500

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�107ð1Þ

p ¼ 0:035 (or 3.5%). The forcing frequency is 4,500 rad/s, so the

frequency ratio is r ¼ 4;500
7;071:1 ¼ 0:636.

The complex FRF, GðrÞ, for this damped, single degree of freedom system is:

G 0:636ð Þ ¼ 1

5� 107

1� 0:636ð Þ2
� �

� i2 0:035ð Þ 0:636ð Þ

1� 0:636ð Þ2
� �2

þ 2 0:035ð Þ 0:636ð Þð Þ2

0
B@

1
CA:

The real part is shown in Fig. 3.20 and the value for r ¼ 0:636 is:

Re G 0:636ð Þð Þ ¼ 1

5� 107

1� 0:636ð Þ2
� �

1� 0:636ð Þ2
� �2

þ 2 0:035ð Þ 0:636ð Þð Þ2

0
B@

1
CA

¼ 3:34� 10�8m/N:

The real part is shown in Fig. 3.21 and the value for r ¼ 0:636 is:

Im G 0:636ð Þð Þ ¼ 1

5� 107
�2 0:035ð Þ 0:636ð Þ

1� 0:636ð Þ2
� �2

þ 2 0:035ð Þ 0:636ð Þð Þ2

0
B@

1
CA

¼ �2:5� 10�9m/N:

m

k c

x(t)

f = 1e i4500t

m = 1 kg 

c = 500 N-s/m 

k = 5×107 N/m 

Fig. 3.19 By the
Numbers 3.2 – the single

degree of freedom

spring–mass–damper system

and model parameters are

shown

3.3 Evaluating the Frequency Response Function 103



www.manaraa.com

The real and imaginary values of the frequency-domain displacement, X 0:636ð Þ,
are determined by multiplying the FRF by the force magnitude of F ¼ 1 N. The real

part is:

Re X 0:636ð Þð Þ ¼ F � Re G 0:636ð Þð Þ ¼ 1 � 3:34� 10�8 ¼ 3:34� 10�8m,

0 0.5 1 1.5 2
–3

–2.5

–2

–1.5

–1

–0.5

0
x 10–7

r

Im
(G

(r
))

 (
m

/N
)

Fig. 3.21 By the Numbers 3.2 – FRF imaginary part. The r ¼ 0:636 point is identified

x 10–7
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–1.5

–1

–0.5

0

0.5

1

1.5

r

R
e(

G
(r

))
 (

m
/N

)

Fig. 3.20 By the Numbers 3.2 – FRF real part. The r ¼ 0:636 point is identified
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and the imaginary part is:

Im X 0:636ð Þð Þ ¼ F � Im G 0:636ð Þð Þ ¼ 1 � �2:5� 10�9
� � ¼ �2:5� 10�9m:

We can now plot these components of the response in the complex plane. The

force and displacement vectors are represented in Fig. 3.22, where the displacement

magnitude is:

X 0:636ð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re G 0:636ð Þð Þ2 þ Im G 0:636ð Þð Þ2

q
¼ 3:35� 10�8m,

and the phase is:

f 0:636ð Þ ¼ tan�1 Im G 0:636ð Þð Þ
Re G 0:636ð Þð Þ
� �

¼ �4:28� ¼ �0:075 rad:

Of course we would obtain the same results by applying Eqs. 3.10 and 3.11.

3.4 Defining a Model from a Frequency Response

Function Measurement

In Figs. 3.8 and 3.9, we saw that key points from the FRF can be quickly identified

based on the peaks in the real and imaginary part plots. What if we were able to

perform a measurement to determine the FRF for a particular structure? We could

then identify a model to represent the measured system using a peak picking
approach.

While we will not discuss FRF measurement until Chap. 7, we can still describe

the steps necessary to use measurement data to define a single degree of freedom

Real 

Imag

−2.5×10−9

(−2.5×10−9)2

−3.34×10−8

−2.5×10−9

3.34×10−8

3.35×10−8 m (3.34×10−8)2

F

φ

= −4.28 deg 

X(0.636)

X (0.636) = + =

f (0.636) = tan−1

Fig. 3.22 By the Numbers 3.2 – Argand diagram for r ¼ 0:636
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system model. Let’s assume that the FRF displayed in Figs. 3.23 (real part) and 3.24

(imaginary part) was obtained from a measurement of a test structure. In the figures,

the peaks are identified by circles and the corresponding peak frequencies and

values are summarized in Table 3.2.

0 500 1000 1500 2000

−1

−0.5

0

0.5

1

x 10−6

f (Hz)

R
e

(G
(f

))
 (

m
/N

)

Fig. 3.23 Real part of measured FRF for a test structure
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Fig. 3.24 Imaginary part of measured FRF for a test structure
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Defining a single degree of freedom spring–mass–damper model based on the

data in Table 3.2 requires five primary steps.

1. The frequency of the minimum imaginary part peak is taken to be the system

natural frequency: fn ¼ 999:2 Hz.

2. The real part maximum and minimum peaks occur at approximately f ¼ fn 1� zð Þ
and f ¼ fn 1þ zð Þ, respectively. Differencing these two frequencies gives:

fn 1þ zð Þ � fn 1� zð Þ ¼ 2zfn:

For the measured FRF, we have1; 039:2� 959:2 ¼ 80 ¼ 2zfn. Since we already
know fn, we can solve for the damping ratio:

z ¼ 80

2 999:2ð Þ ¼ 0:04 ð4%Þ:

3. We determine the stiffness from the peak value of the minimum imaginary part.

Recall from Fig. 3.9 that the minimum value is � 1
2kz . We found z in Step 2,

so we can now solve for k.

k ¼ �1

2 0:04ð Þ �2:084� 10�6
� � ¼ 6� 106 N/m

4. Given the natural frequency and stiffness, we can find the model mass.

m ¼ k

on
2
¼ k

2pfnð Þ2 ¼
6� 106

2p � 999:2ð Þ2 ¼ 0:15 kg

5. The viscous damping coefficient is then:

c ¼ 2z
ffiffiffiffiffiffi
km

p
¼ 2 0:04ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� 106
� �

0:15
q

¼ 75:9N-s/m:

IN A NUTSHELL The peak picking strategy is a method of curve

fitting. We have a measured FRF and we are trying to choose model

parameters for a single degree of freedom system that has an FRF

like the one we measured. There are many curve-fitting methods,

but the peak picking method uses three easily identifiable points

on the real and imaginary parts of the FRF. This is one reason to choose the

real/imaginary FRF representation.

Table 3.2 Frequencies and

values of FRF real and

imaginary part peaks

Peak Frequency (Hz) Value (m/N)

Real maximum 959.2 1.085 � 10�6

Real minimum 1,039.2 �1.002 � 10�6

Imaginary minimum 999.2 �2.084 � 10�6
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The spring–mass–damper model is shown in Fig. 3.25. Let’s now use our model

to predict the vibration magnitude if a harmonic force, f ðtÞ ¼ 1;000eiont N,

is applied at the measurement point in the measurement direction. Note that the

excitation frequency is equal to the system natural frequency, on ¼ 2pfn ¼
6;278 rad/s. For this resonant condition, the vibration magnitude is:

Xj j ¼ F

2kz
¼ 1; 000

2 6� 106
� �

0:04
¼ 2:1� 10�3 m¼ 2:1 mm

If this vibration magnitude is too large, we could attempt to reduce it by:

• Increasing the damping

• Increasing the stiffness – this will serve to not only decrease the magnitude for

any forcing function, but will also increase the natural frequency so that the

existing force will no longer excite the structure at resonance. If the increase

in stiffness is Dk, the new natural frequency will be on ¼
ffiffiffiffiffiffiffiffi
kþDk
m

q
.

3.5 Rotating Unbalance

A special case of forced vibration is rotating unbalance. This occurs when a

rotating structure does not possess perfect symmetry in its mass distribution.

Common examples include:

• electric motors

• turbines

• automobile wheels

• washing machines.

m

k c

x(t) 

m = 0.15 kg 

c = 75.9 N-s/m 

k = 6×106 N/m 

Fig. 3.25 Spring–mass–

damper model identified from

a measured FRF (Figs. 3.23

and 3.24) using the peak

picking approach
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For the final example, you may have witnessed a washing machine “walk across

the floor” during the spin cycle due to an uneven distribution of the wet (heavy)

clothes in the drum. To describe this behavior in terms of forced vibration, consider

the system shown in Fig. 3.26. An unbalanced mass, m, with an eccentricity (the

distance of the unbalanced mass from the center of rotation), e, rotates with an

angular speed, o. The vertical displacement of the mass in Fig. 3.26 is:

xþ e sin otð Þ;

where x is the motion of the support structure with a mass of M�m. (The total

system mass is the sum of the support structure and unbalanced mass,

M � mþ m ¼ M.) The free-body diagram for the system is shown in Fig. 3.27.

Unlike our previous free-body diagrams, this one includes two inertial forces; one

for the support structure, f ¼ M � mð Þ€x, and one for the rotating unbalanced mass,

f ¼ m d
dt2 xþ e sin otð Þð Þ. Calculating the derivative gives:

f ¼ m €x� eo2 sin otð Þ� �
:

m
wt 

c

x(t) 
e

k

Fig. 3.26 Single degree of

freedom model with rotating

unbalance

m x(t) 

cx kx

(M−m)x (x+esin(w t ))dm
dt2

Fig. 3.27 Free-body diagram

for the rotating unbalance

model in Fig. 3.26
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Summing the forces to zero in the x direction,
P

fx ¼ 0, gives the equation of

motion.

M � mð Þ€xþ m €x� eo2 sin otð Þ� �þ c _xþ kx ¼ 0

Simplifying and rewriting this equation yields:

M€xþ c _xþ kx ¼ meo2 sin otð Þ; (3.24)

where the right hand side of this equation is a harmonic forcing function with the

frequency-dependent magnitude meo2. The force amplitude naturally increases

with increasing unbalanced mass and eccentricity, but also grows with the square

of the rotating frequency.

The magnitude and phase of the corresponding frequency-domain vibration are:

Xj j ¼ meo2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k �Mo2ð Þ2 þ coð Þ2

q (3.25)

and

f ¼ tan�1 co
k �Mo2

� �
: (3.26)

As before, we can rewrite these equations to be functions of r and z. Here, r is the

ratio of the unbalanced mass rotating speed to the natural frequency, on ¼
ffiffiffi
k
M

q
.

Also, the damping ratio is z ¼ c
2
ffiffiffiffiffi
kM

p . See Eqs. 3.27 and 3.28.

Xj j ¼
m
M er2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ð Þ2 þ 2zrð Þ2
q (3.27)

f ¼ tan�1 2zr
1� r2

� �
(3.28)

A nondimensionalized magnitude plot is provided in Fig. 3.28. The vertical axis of
MX
me was obtained by movingM,m, and e from the numerator of the right-hand side to

the left-hand side in Eq. 3.27. Responses are provided for z ¼ 0.01, 0.05, and 0.1.

In some cases, we wish to maintain a vibration magnitude below a certain level to

avoid damage to the system, such as bearing damage for a rotating shaft; see Fig. 3.29.

In this case, we may need to select a range of acceptable rotating speeds so that this

maximum vibration magnitude is not exceeded. In Fig. 3.30, the acceptable rotating

speed ranges are o<o1 and o>o2. The problem with the second range is that the

speed must pass through resonance (o ¼ on) in order reach o2. This would only be

an acceptable alternative if short-term, large vibration magnitudes will not harm

the system.
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ζ = 0.1

Fig. 3.28 Rotating unbalance frequency-domain vibration response for z ¼ 0.01, 0.05, and 0.1

X

w 1 w 2
w

Xmax 

Fig. 3.30 Acceptable speed ranges for a maximum allowable vibration magnitude

ω

Shaft 

Radial support bearings
(mounts not shown) 

Fig. 3.29 A rotating shaft supported by bearing. Large magnitude rotating unbalance could

damage the bearings
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IN A NUTSHELL Designers of rotating systems use Eq. 3.27.

In some instances (such as a jet engine), the rotational speed often

changes and the designers attempt to place the natural frequency of

the system far above the rotational frequency of the shaft. In this

case, the system never operates at resonance. In other situations

(like a turbine in a power plant), the rotational speed is held constant over long

periods of time (on the order of months). In this case, designers often place the

operating speed far above the resonance so that the vibration amplitude is as

small as possible during operation. During start up, the forcing frequency passes

through resonance, but this happens quickly and not very often.

By the Numbers 3.3

Let’s consider an example. On cell phones, the “silent ring” can be produced using

an eccentric mass to provide a force and vibration due to the rotating imbalance.

Figure 3.31 shows a small motor with an unbalanced mass supported by four flexible

tethers for illustration purposes.4 The parallel pairs of tethers produce a flexure

mechanism that is flexible in the x (vertical) direction but stiff in the orthogonal

(horizontal) direction (Smith 2000). For this device, the rotating speed was varied,

and the following results were obtained.

1. The maximum magnitude of vibration, X, was 1.0 mm.

2. For high frequencies, themagnitude asymptotically approached 0.02mm ¼ 20mm
(about one fifth of a human hair’s diameter).

Using this information, let’s estimate the damping ratio, z, for the system. First,

we can use the magnitude equation, Eq. 3.27, substitute r ¼ 1 for resonance and set

the right-hand side equal to 1.0 mm.

ω

x 

Fig. 3.31 By the
Numbers 3.3 – Unbalanced

mass used to produce a cell

phone’s “silent ring”

4 This tether/payload geometry is referred to as a floating element structure in microelectrome-

chanical systems (MEMS) design and has been used for shear stress measurement (Xu et al. 2009).
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Xj j ¼
m
M eð1Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð1Þ2
� �2

þ 2zð1Þð Þ2
r ¼

m
M e

2z
¼ 1:0 mm (3.29)

Second, we can let r ! 1 in Eq. 3.27 and set the right-hand side equal

to 0.02 mm.

Xj j ¼
m
M e 1ð Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1ð Þ2
� �2

þ 2z 1ð Þð Þ2
r ¼

m
M e 1ð Þ2
1ð Þ2 ¼ m

M
e ¼ 0:02 mm (3.30)

Substituting m
M e ¼ 0:02 mm from Eq. 3.30 into Eq. 3.29 yields:

Xj j ¼ 0:02

2z
¼ 1:0 mm (3.31)

Solving for the damping ratio gives z ¼ 0:01 ¼ 1%.

3.6 Base Motion

Base motion is observed when a system (for example, an automobile engine) is

excited through elastic supports (such as the engine mounts that connect the engine

to the automobile frame). Another example is the motion of an automobile’s chassis

in response to a wavy road surface.

Let’s consider Fig. 3.32, where the motion, xðtÞ, of a single degree of freedom

spring–mass–damper system is excited by motion of the structure’s base, yðtÞ.
The free-body diagram for the mass, which is also included in Fig. 3.32, gives the

equation of motion:

m€xþ c _x� _yð Þ þ k x� yð Þ ¼ 0: (3.32)

m 

c k 

y 

x 

m x 

mx

k(x−y) c(x−y)
Fig. 3.32 Base motion for a

single degree of freedom

spring–mass–damper
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We can rewrite Eq. 3.32 to isolate the response (x) terms on the left and the

input (y) terms on the right.

m€xþ c _xþ kx ¼ c _yþ ky (3.33)

For harmonic base motion, yðtÞ ¼ Yeiot, the response is also harmonic,

xðtÞ ¼ Xeiot. Calculating the derivatives of these expressions and substituting in

Eq. 3.33 gives:

�mo2 þ icoþ k
� �

Xeiot ¼ icoþ kð ÞYeiot: (3.34)

We can now calculate the ratio of the response, X, to the base motion input, Y.

X

Y
¼ icoþ k

�mo2 þ icoþ k
(3.35)

Let’s rewrite this equation in the r and z notation we have used previously.

X

Y
¼ ðkÞ þ i coð Þ

k � mo2ð Þ þ i coð Þ ¼
k
m

� �þ i c
mo
� �

k
m � o2
� �þ i c

mo
� � ¼ o2

n

� �þ i 2zonoð Þ
o2

n � o2
� �þ i 2zonoð Þ (3.36)

Dividing the numerator and denominator by o2
n, we obtain:

X

Y
¼

ð1Þ þ i 2z o
on

� �

1� o2

o2
n

� �
þ i 2z o

on

� � ¼ 1þ i 2zrð Þ
1� r2ð Þ þ i 2zrð Þ : (3.37)

We can now rationalize Eq. 3.37.

X

Y
¼ 1þ i 2zrð Þ

1� r2ð Þ þ i 2zrð Þ �
1� r2ð Þ � i 2zrð Þ
1� r2ð Þ � i 2zrð Þ ¼

1þ 4z2 � 1
� �

r2 � i 2zr3ð Þ
1� r2ð Þ2 þ 2zrð Þ2 (3.38)

The real part of Eq. 3.38 is:

Re
X

Y

� �
¼ 1þ 4z2 � 1

� �
r2

1� r2ð Þ2 þ 2zrð Þ2 : (3.39)

The imaginary part is:

Im
X

Y

� �
¼ �2zr3

1� r2ð Þ2 þ 2zrð Þ2 : (3.40)

114 3 Single Degree of Freedom Forced Vibration



www.manaraa.com

The magnitude, which is referred to as the displacement transmissibility, is the
square root of the sum of the squares of the real and imaginary parts. The displace-

ment transmissibility describes the transfer of the base motion to the mass motion.

In many instances, we wish this transmissibility to be low so that the base motion is

only weakly transmitted to the degree of freedom of interest.

X

Y

				
				 ¼ 1þ 4z2 � 1

� �
r2

� �2 þ 2zr3ð Þ2
1� r2ð Þ2 þ 2zrð Þ2

 !1
2

(3.41)

The corresponding phase lag of the mass motion with respect to the base

motion is:

f ¼ tan�1 Im

Re

� �
¼ tan�1 �2zr3

1þ 4z2 � 1
� �

r2

 !
: (3.42)

By the Numbers 3.4

The suspension for an automobile can be modeled as a single degree of freedom

spring–mass–damper as shown in Fig. 3.32 with a natural frequency of 3 Hz and

a damping ratio of 0.5. The natural frequency is based on the combination of the

car’s mass and the suspension spring’s stiffness. The damping comes primarily

from the shock absorber. If yðtÞ represents the motion of the wheel center as it

follows the oscillating road surface depicted in Fig. 3.33, determine the magnitude

of the automobile’s motion, X, when the car is traveling at 60 mph.

The first step in the solution is to determine the forcing frequency, f (in Hz), due
to the automobile’s motion across the wavy road. The car’s speed, v, is:

v ¼ 60
min

hr
� 1

3; 600

hr

s
� 5;280 ft

min
� 12 in:

ft
� 0:0254 m

in:
¼ 26:8

m

s
:

+20 mm 

8 m

−20 mm 

m 

c 

x 

y 

Y = 20 mm 

Fig. 3.33 By the Numbers 3.4 – Base motion example for automobile suspension (not to scale)
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The forcing frequency is the speed divided by the spatial wavelength of the

road’s surface:

f ¼ 26:8

8
¼ 3:35Hz:

The frequency ratio is therefore r ¼ f
fn
¼ 3:35

3
¼ 1:12. We determine Xj j using

Eq. 3.40, where z ¼ 0:5: A plot of Xj j versus r is provided in Fig. 3.34; the

operating point is identified by a circle. The code used to produce Fig. 3.34 is

provided in MATLAB
® MOJO 3.4.

Xj j ¼ 20
1þ 4 0:5ð Þ2 � 1

� �
1:122

� �2
þ 2 0:5ð Þ1:123� �2

1� 1:122
� �2 þ 2 0:5ð Þ1:12ð Þ2

0
B@

1
CA

1
2

¼ 26:1mm

We see that the 20-mm road excitation is transmitted as a 26.1-mm magnitude

oscillation of the automobile. This amplification occurs because the forcing fre-

quency is near the suspension’s natural frequency. At much lower or higher speeds,

the vibration level would be less.

MATLAB
®

 MOJO 3.4 
% matlab_mojo_3_4.m

clc
close all
clear all

% Model dynamics
fn = 3;                     % Hz
zeta = 0.5;
Y_mag = 20;                 % mm

r = 0:0.001:2;

Re = (1 + (4*zeta^2 - 1)*r.^2)./((1 - r.^2).^2 + (2*zeta*r).^2);
Im = -(2*zeta*r.^3)./((1 - r.^2).^2 + (2*zeta*r).^2);

X_mag = Y_mag*(Re.^2 + Im.^2).^0.5;

figure(1)
plot(r, X_mag, 'k')
set(gca,'FontSize', 14)
xlabel('r')
ylabel('|X| (mm)')
hold on

index = find(r == 1.12);

plot(r(index), X_mag(index), 'ko')
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IN A NUTSHELL “Rumble strips” on a roadway are designed with

a spacing that causes large motion of the car body when the car

passes over the bumps. One way to minimize the vibration inside the

car would be to drive over the rumble strips at a high rate of speed

(moving the excitation frequency far above resonance). We do not

recommend experimental verification, however.

3.7 Impulse Response

When describing the equation of motion for a single degree of freedom lumped

parameter system under forced vibration in Sect. 3.1, we assumed a harmonic force

input of the form f ðtÞ ¼ Feiot, where o is the forcing frequency. This enabled us

to define the corresponding FRF and explore its behavior. However, we recognize

that not all forces are best described as a harmonic function at a single frequency.

In a given situation, the force may be composed of multiple frequencies (e.g., an

earthquake); it may be random (i.e., follows an erratic pattern that must be

described statistically), or it may be transient. A common transient example is the

impulsive force. In Chap. 7, we will explore the use of an impact hammer to excite a

structure in order to measure its FRF. Because this is an important measurement

technique, let’s determine the response of our spring–mass–damper model from

Fig. 3.1 to an impulsive input. This input can be defined as:

f ðtÞ ¼
0; t � 0

F; 0< t<Dt

0; t 
 Dt

8><
>: (3.43)
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Fig. 3.34 By the Numbers 3.4 – Automobile response, X, to the wavy road input
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and is depicted in Fig. 3.35. We see that it has a constant value, F, over the

short-time interval from 0 to Dt. The solution to the equation of motion,

m€xþ c _xþ kx ¼ f ðtÞ, is based on Newton’s second law, which tells us that the

impulse of the force is equal to the change in momentum of the system that it

excites. We define the impulse of the force as the area under the force curve; this

area is FDt for the function defined in Eq. 3.24, but may be generically described as

the product of the average force value and the time interval over which the force is

applied (provided the time interval is small). If we assume zero initial conditions for

the system in Fig. 3.1, its change in momentum is mv0, where v0 is the velocity of

the mass due to the force application and the initial displacement is still zero.

Therefore, FDt ¼ mv0. This is an interesting observation because it enables us to

treat this problem as a case of free vibration with a nonzero initial velocity,

v0 ¼ FDt
m , and a zero initial displacement.

We have already considered the solution of free vibration for underdamped

systems using initial conditions in Sect. 2.4.5. One form for the general response

is xðtÞ ¼ Xe�zont sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
ontþ f

� �
, where:

X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x0 þ zonx0ð Þ2 þ x0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
on

� �2r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
on

and f ¼ tan�1 x0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
on

_x0 þ zonx0

 !
: ð3:44Þ

IN A NUTSHELL Equation 3.44 provides the magnitude and

phase for the free vibration of an underdamped single degree of

freedom system in terms of the initial conditions. If we have a single

degree of freedom system problem and the system is underdamped,

then we can use these values to write the resulting motion as a

function of time if the initial conditions are known.

t (s)

F

f (N)

0
Δt

Fig. 3.35 Graphical impulse

description
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For the impulse response, x0 ¼ 0 and _x0 ¼ v0, so Eq. 3.45 simplifies to:

X ¼ v0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
on

andf ¼ 0: (3.45)

The system response to the impulse is therefore:

xðtÞ ¼ v0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
on

e�zont sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
ont

� �
: (3.46)

Substituting v0 ¼ FDt
m gives:

xðtÞ ¼ FDt

m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
on

e�zont sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
ont

� �
: (3.47)

We can rewrite this equation as xðtÞ ¼ FDt � hðtÞ, where:

hðtÞ ¼ 1

m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
on

e�zont sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
ont

� �
(3.48)

is the impulse response function for our underdamped spring–mass–damper system.

By the Numbers 3.5

Let’s consider the system shown in Fig. 3.1, but now with the Eq. 3.42 force applied

to the mass. Let’s select a natural frequency of 500 Hz, a damping ratio of 0.05, and

a stiffness of 1 � 106 N/m. The mass is, therefore, m ¼ k
2pfnð Þ2 ¼ 1�106

2p�500ð Þ2 ¼ 0:1 kg.

Also, F ¼ 100 N and Dt ¼ 1� 10�3 s. Substituting in Eq. 3.46 yields:

xðtÞ ¼ 100 1� 10�3
� �

0:1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:052

p
500

e�0:05 500ð Þt sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:052

p
500t

� �
:

The vibration response to the impulsive input is displayed in Fig. 3.36.

We see that:

• the initial displacement is zero

• the force causes a rapid departure from the equilibrium position to a maximum

value of 1.853 mm at t ¼ 3� 10�3 s

• the oscillating response exponentially decays to zero over time.

We will explore this further in Sect. 7.4.

We can also use the impulse response function to determine the vibration

response for our underdamped single degree of freedom system with zero initial

conditions due to a general, nonperiodic input force. If we consider the forcing
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function shown in Fig. 3.37, we see that it is possible to approximate this profile as n
separate impulsive forces. In this case, the force is not applied only at t ¼ 0. Rather,

it also appears at t ¼ ti, where i ¼ 1:::n is the impulse index. The impulse response

function can now be written as:

h t� tið Þ ¼ 1

m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
on

e�zon t�tið Þ sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
on t� tið Þ

� �
; (3.49)

and the response to f tið Þ is x tið Þ ¼ f tið ÞDt � h t� tið Þ, where Dt is the total time

divided by n. The final response for the linear system is simply the sum of all the

responses x tið Þ. As Dt ! 0, this sum can be expressed as the convolution integral:

xðtÞ ¼
Z t

0

f tð Þh t� tð Þdt: (3.50)
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(m

m
)

Fig. 3.36 By the Numbers 3.5 – Impulse response for spring–mass–damper system

t

f (t) 

f (ti) 

0

Δt
ti

Fig. 3.37 Representation of a general force as a series of impulsive forces
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Substitution of Eq. 3.49 into Eq. 3.50 gives:

xðtÞ ¼ 1

m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
on

e�zont

Z t

0

f tð Þezont sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
on t� tð Þ

� �
dt: (3.51)

Chapter Summary

• The frequency response function relates the harmonic force applied to a system

to the resulting vibration as a function of the forcing frequency, o.
• The largest value of a system’s frequency response function occurs at resonance,

when the system is forced at its natural frequency (o ¼ on).

• The complex-valued frequency response function can be written as its real and

imaginary parts or its magnitude and phase.

• A high Q system has low damping and vice versa.

• The dynamic flexibility, or compliance, of a system depends on the excitation

frequency.

• A peak picking approach can be applied to a measured frequency response

function in order to identify a model that represents the dynamic behavior of

the measured system.

• A special case of forced vibration is rotating unbalance, where the force magni-

tude depends on the unbalanced mass, its eccentricity, and the rotating

frequency.

• Base motion is observed when a system is excited through elastic supports.

• As an alternative to a single-frequency harmonic force model, the force may be

described as being composed of multiple frequencies, random, or transient.

• An example of a transient force is the impulsive force.

• The impulse response function can be used to identify the behavior of a system

due to an impulsive force input.

• The convolution integral can be used to determine the response of a system with

zero initial conditions due to a general, nonperiodic input force.

Exercises

1. An apparatus known as a centrifuge is commonly used to separate solutions of

different chemical compositions. It operates by rotating at high speeds to

separate substances of different densities.
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(a) If a single vial with a mass of 0.2 kg is placed in the centrifuge (see

Fig. P3.1) at a distance of 20 mm from the rotating axis, determine the

magnitude of the resulting vibration, X (in mm), of the single degree of

freedom centrifuge structure. The rotating speed is 200 rpm.

(b) Determine the magnitude of the forcing function (in N) due to the single

0.2 kg vial rotating at 200 rpm.

2. For a single degree of freedom spring–mass–damper system with m ¼ 2.5 kg,

k ¼ 6 � 106 N/m, and c ¼ 180 N-s/m, complete the following for the case of

forced harmonic vibration.

(a) Calculate the undamped natural frequency (in rad/s) and damping ratio.

(b) Sketch the imaginary part of the system FRF versus frequency. Identify the

frequency (in Hz) and amplitude (in m/N) of the key features.

(c) Determine the value of the imaginary part of the vibration (in mm) for this

system at a forcing frequency of 1500 rad/s if the harmonic force magni-

tude is 250 N.

3. A single degree of freedom lumped parameter system has mass, stiffness, and

damping values of 1.2 kg, 1 � 107 N/m, and 364.4 N-s/m, respectively.

Generate the following plots of the frequency response function.

(a) Magnitude (m/N) versus frequency (Hz) and phase (deg) versus frequency

(Hz)

(b) Real part (m/N) versus frequency (Hz) and imaginary part (m/N) versus

frequency (Hz)

(c) Argand diagram, real part (m/N) versus imaginary part (m/N).

20 mm 

x(t) 

k k

c c

k = 1000 N/m 
c = 50 N-s/m 

Single vial with
m = 0.2 kg Centrifuge mass

is 2 kg. 

Fig. P3.1 Centrifuge model with a single vial
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4. For the single degree of freedom torsional system under harmonic forced

vibration (see Fig. P3.4), complete parts a through c if J ¼ 40 kg-m2/rad,

C ¼ 150 N-m-s/rad, K ¼ 5 � 105 N-m/rad, and T0 ¼ 65 N-m.

(a) Calculate the undamped natural frequency (rad/s) and damping ratio.

(b) Sketch the Argand diagram (complex plane representation) of y
T oð Þ.

Numerically identify key frequencies (rad/s) and amplitudes (rad/N-m).

(c) Given a forcing frequency of 100 rad/s for the harmonic external torque,

determine the phase (in rad) between the torque and corresponding steady-

state vibration of the system, y.

5. For a single degree of freedom spring–mass–damper system subject to forced

harmonic vibration with m ¼ 1 kg, k ¼ 1 � 106 N/m, and c ¼ 120 N-s/m,

complete the following.

(a) Calculate the damping ratio.

(b) Write expressions for the real part, imaginary part, magnitude, and phase of

the system frequency response function (FRF). These expressions should

be written as a function of the frequency ratio, r, stiffness, k, and damping

ratio, z.
(c) Plot the real part (in m/N), imaginary part (in m/N), magnitude (in m/N),

and phase (in deg) of the system frequency response function (FRF) as a

function of the frequency ratio, r. Use a range of 0 to 2 for r (note that r ¼ 1

is the resonant frequency). [Hint: for the phase plot, try using the MATLAB
®

atan2 function. It considers the quadrant dependence of the tan�1 function.]

6. A single degree of freedom spring–mass–damper system which is initially at rest

at its equilibrium position is excited by an impulsive force over a time interval of

1.5 ms; see Fig. P3.6. If the mass is 2 kg, the stiffness is 1 � 106 N/m, and the

viscous damping coefficient is 10 N-s/m, complete the following.

Torsional
spring, K,
with viscous
damping, C 

Disk with radius, r, mass, m,
and mass moment of inertia, J

T = T0e
iw t

q (t) 

Fig. P3.4 Single degree of

freedom torsional system

under harmonic forced

vibration
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(a) Determine the maximum allowable force magnitude if the maximum

deflection is to be 1 mm.

(b) Plot the impulse response function, hðtÞ, for this system. Use a time step

size of 0.001 s.

(c) Calculate the impulse of the force (N-s).

7. For a single degree of freedom spring–mass–damper system subject to forced

harmonic vibration, the following FRF was measured (two figures are provided

with different frequency ranges). Using the “peak picking” fitting method,

determine m (in kg), k (in N/m), and c (in N-s/m).
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Fig. P3.7a Measured FRF

m

k
c

x(t) 

f(t)

Fig. P3.6 Spring–mass–

damper system excited by an

impulsive force
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8. For a single degree of freedom spring–mass–damper system with m ¼ 2 kg,

k ¼ 1 � 107 N/m, and c ¼ 200 N-s/m, complete the following for the case of

forced harmonic vibration.

(a) Calculate the natural frequency (in rad/s) and damping ratio.

(b) Plot the Argand diagram (real part vs imaginary part of the system FRF).

(c) Identify the point on the Argand diagram that corresponds to resonance.

(d) Determine the magnitude of vibration (in m) for this system at a forcing

frequency of 2,000 rad/s if the harmonic force magnitude is 100 N.

9. In a crank-slider setup, it is desired to maintain a constant rotational speed for

driving the crank. Therefore, a flywheel was added to increase the spindle

inertia and reduce the speed sensitivity to the driven load. See Fig. P3.9. If the

Flywheel (100mm
radius) 

Crank arm 

Follower arm 

Spindle

Slider 

x 

Fig. P3.9 Crank-slider with flywheel
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Fig. P3.7b Measured FRF (smaller frequency scale)
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spindle rotating speed is 120 rpm, determine the maximum allowable eccen-

tricity-mass product, me (in kg-m), for the flywheel if the spindle vibration

magnitude is to be less than 25 mm. The total spindle/flywheel mass is 10 kg,

the effective spring stiffness (for the spindle and its support) is 1 � 106 N/m,

and the corresponding damping ratio is 0.05 (5%).

Given your me result, comment on the accuracy requirements for the

flywheel manufacture (you may assume no rotating unbalance in the spindle).

10. A single degree of freedom spring–mass–damper system with m ¼ 1.2 kg,

k ¼ 1 � 107 N/m, and c ¼ 364.4 N-s/m is subjected to a forcing function

f ðtÞ ¼ 15eiont N, where on is the system’s natural frequency. Determine the

steady-state magnitude (in mm) and phase (in deg) of the vibration due to this

harmonic force.
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Chapter 4

Two Degree of Freedom Free Vibration

Since we cannot know all that there is to be known about
anything, we ought to know a little about everything.

– Blaise Pascal

4.1 Equations of Motion

Let’s extend our free vibration analysis from Chap. 2 to include two degrees of

freedom in the model. This would make sense, for example, if we completed a

measurement to determine the frequency response function (FRF) for a system and

saw that there were obviously two modes of vibration within the frequency range

of interest; see Fig. 4.1.

The two degree of freedom lumped parameter, chain-type model is shown in

Fig. 4.2, where damping is neglected for now. The free body diagrams for the upper

and lower masses give two equations of motion. Summing the forces in the x1
direction for the top mass gives:

m1€x1 þ k1x1 � k2 x2 � x1ð Þ ¼ 0;

which can be rewritten (by grouping terms) to obtain:

m1€x1 þ k1 þ k2ð Þx1 � k2x2 ¼ 0: (4.1)

Similarly, for the bottom mass we have:

m2€x2 þ k2 x2 � x1ð Þ ¼ 0

T.L. Schmitz and K.S. Smith, Mechanical Vibrations: Modeling and Measurement,
DOI 10.1007/978-1-4614-0460-6_4, # Springer Science+Business Media, LLC 2012
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or

m2€x2 þ k2x2 � k2x1 ¼ 0: (4.2)

The force in the spring k2 deserves further discussion. For the lower-mass free

body diagram in Fig. 4.2, the force is directed up (opposite the x2 direction) and is

written as k2 x2 � x1ð Þ. This is because the motion of mass m2 depends on the

m1 x1

m2

k2

x2

k1

m1

m2

k1x1m1x1

k2(x2−x1)

m2x2 k2(x2−x1)

Fig. 4.2 Lumped parameter, chain-type model for an undamped two degree of freedom system

Mode 1 Mode 2 
Re(G(w))

Im(G(w))))

w

w

Fig. 4.1 Two-mode FRF measurement that justifies a two degree of freedom model
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motion of mass m1 and vice versa for the chain-type, lumped parameter model.

If the position of m1 was held fixed and m2 was displaced down by x2, then the force
in the spring k2 would oppose this motion and its value would be k2 x2 � 0ð Þ ¼ k2x2.
However, if bothm1 andm2 were displaced down by the same amount, Dx, the force
in the spring would be k2 Dx� Dxð Þ ¼ 0. An equal and opposite force is applied to

the top mass.

IN A NUTSHELL It is often useful to consider the effect of the

displacement (or velocity or acceleration) of one coordinate while

holding the other coordinate(s) motionless.

4.2 Eigensolution for the Equations of Motion

Let’s now organize Eqs. 4.1 and 4.2 into matrix form. Equation 4.3 includes two

rows in the matrix expressions. The top row describes the behavior of the top

coordinate and the bottom row describes the motion of the bottom coordinate. This

equation can be more compactly written, as shown in Eq. 4.4, where the mass

matrix is m¼ m1 0

0 m2

� �
, the acceleration vector is ~€x

� �¼ €x1
€x2

� �
, the stiffness matrix

is k¼ k1þk2�k2
�k2 k2

� �
, and the displacement vector is ~xf g¼ x1

x2

� �
.

m1 0

0 m2

� �
€x1
€x2

� �
þ k1 þ k2 �k2

�k2 k2

� �
x1
x2

� �
¼ 0

0

� �
(4.3)

m½ � ~€x
n o

þ k½ � ~xf g ¼ 0f g (4.4)

We will treat Eq. 4.4 as an eigenvalue problem to determine the:

1. eigenvalues, which lead to the system’s natural frequencies; and

2. eigenvectors, or mode shapes, which describe the characteristic relative motion

of the individual degrees of freedom (typically normalized to one of the degrees

of freedom). Each mode shape is associated with a particular natural frequency.

IN A NUTSHELL Eigenvalue problems are found in many areas

of engineering. Such problems are called eigenvalue problems

because the German word “eigen,” which can be translated as

“own,” “characteristic,” or “peculiar to,” emphasizes that these

values belong to the system model and do not depend on external

perturbations (http://en.wiktionary.org/wiki/eigen). Given the eigensolution, we

can then use this information to determine the time-domain response of the system.
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Let’s begin by assuming harmonic vibration so that we can write a

Laplace-domain (s ¼ io) form for the solution to the differential equations of

motion. The displacement is xðtÞ ¼ Xest and the corresponding acceleration is

€xðtÞ ¼ s2Xest. Substitution into Eq. 4.4 gives:

m½ �s2 ~X
� �

est þ k½ � ~X
� �

est ¼ m½ �s2 þ k½ �� 	
~X

� �
est ¼ 0f g; (4.5)

where ~X
� �¼ X1

X2

� �
. There are two possibilities for satisfying Eq. 4.5. The first is that

~X
� �¼ 0f g. This means that there is no motion and, while this is a valid result, it is

not very useful to us. As in the single degree of freedom case, it is referred to as the

trivial solution. The second possibility is that m½ �s2þ k½ �� 	¼ 0f g and it is the option

that we will use to find the eigenvalues. In order for this equation to have nontrivial

solutions, it is required that the determinant of the left-hand side be equal to zero.

This is shown in Eq. 4.6 and is referred to as the characteristic equation. The roots
of this equation are the eigenvalues.

m½ �s2 þ k½ �

 

 ¼ 0 (4.6)

For the two degree of freedom model displayed in Fig. 4.2, the corresponding

characteristic equation is:

m1 0

0 m2

� �
s2 þ k1 þ k2 �k2

�k2 k2

� �








 ¼ 0: (4.7)

As we saw in Sect. 2.4.5, the determinant of a 2 � 2 matrix is the difference

between the product of the on-diagonal terms and the product of the off-diagonal

terms, i.e., 1; 1ð Þ 2; 2ð Þ � 1; 2ð Þ 2; 1ð Þ, where these indices identify the (row,

column). Rewriting Eq. 4.7 in standard 2 � 2 form yields:

m1s
2 þ k1 þ k2 �k2
�k2 m2s

2 þ k2










 ¼ 0: (4.8)

The characteristic equation (determinant) is:

m1s
2 þ k1 þ k2

� �
m2s

2 þ k2
� �� �k2ð Þ �k2ð Þ ¼ 0: (4.9)

This gives an equation of the form as4 þ bs2 þ c ¼ 0, which is quadratic in s2.
Using the quadratic equation, the two roots, s21 and s22, are given by s21;2 ¼
�b�

ffiffiffiffiffiffiffiffiffiffiffi
b2�4ac

p
2a . These roots, or eigenvalues, are used to determine the system natural

frequencies:

s21 ¼ �o2
n1

s22 ¼ �o2
n2; ð4:10Þ
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where on1 < on2 by convention (in other words, the roots are ordered such that the

first root gives the lowest natural frequency). Using the eigenvalues, we can next

determine the eigenvectors, or mode shapes. These represent the relative magnitude

and direction for the model’s degrees of freedom (coordinates) during vibration.

IN A NUTSHELL We cannot solve for X1 and X2 in Eq. 4.5 once

s21 and s22 have been determined. It might look like two equations

with two unknowns, but it is not. The s2 values were found by

requiring the determinant to be equal to zero, which means that the

two equations are not independent.

Suppose the model in Fig. 4.2 was used to describe the vibrating motion of a

cantilever beam. As we discussed in Sect. 1.4, a continuous beam has an infinite

number of degrees of freedom. However, in this case, let’s assume it is adequate to

describe the motion at two locations only: at the midpoint of the beam and at its free

end. We will let x2 represent the midpoint and x1 the tip. The first mode shape, c1,

for a cantilever beam is provided in Fig. 4.3. The vibration in this mode shape

occurs at the first natural frequency, on1. The relative magnitudes of vibration at x1
and x2 are also shown in Fig. 4.3. We see that the magnitude of vibration at the free

end is larger than at the beam’s midpoint by a ratio of approximately 1:0.34 for

vibration at the first natural frequency, on1.

The second mode shape, c2, is displayed in Fig. 4.4. In this case, the motion at x1
is again larger, but it is out of phase with the motion at x2. The corresponding ratio is
approximately 1:�0.71. Motion in this mode shape occurs at the second natural

frequency, on2. For the model in Fig. 4.2, we only have two coordinates and

therefore would not have any way of knowing the high-resolution mode shapes

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x/L

ψ
1

X1 = 1 

X2 = 0.34 

Fig. 4.3 First mode shape for a cantilever beam
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given in Figs. 4.3 and 4.4. We can represent the two mode shapes for our

two degree of freedom model, as shown in Fig. 4.5. As with Figs. 4.3 and 4.4,

we will normalize the motion at x1 to 1 and plot the corresponding magnitude

(and direction) for the motion at x2. The choice to set the vibration magnitude at x1
to 1 is for convenience; the mode shape only gives the relative motion between

coordinates, so the scaling is arbitrary. In some cases, it could make more sense

to normalize to x2. We will explore this issue in more detail as we move forward.

From Fig. 4.5, we see that the motion at x2 has a smaller magnitude (the ratio

is 1:0.34) but the same direction when vibrating at on1 in the first mode shape.

For the second mode shape, the motion at x2 is again smaller than at x1 (the ratio

is 1:�0.71), but now in the opposite direction. This matches the behavior we

observed in Figs. 4.3 and 4.4. Note that we have two natural frequencies and

mode shapes because our model has two degrees of freedom. For a three degree

of freedom model, we’d have three natural frequencies and mode shapes.

x1

x2

x1

x2

First mode shape Second mode shape 

1 1 

0.34 

−0.71 

Fig. 4.5 Mode shapes for a two degree of freedom representation of a cantilever beam
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Fig. 4.4 Second mode shape for a cantilever beam
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IN A NUTSHELL There are many ways to normalize mode

shapes. They can be normalized to a position: scaling so that the

mode shape component at a particular coordinate is 1. They may

be length normalized: scaling so that the length of the vector is 1.

Mode shapes can be scaled in any convenient way because they

show relative motion between coordinates, but not the absolute size of motion.

The functions used to plot the mode shapes for beams with various boundary
conditions (such as free-free, pinned-pinned, and fixed-free) have been tabulated

by Blevins (Blevins 2001). The cantilever, or fixed-free, mode shape function is:

Ci ¼ 1

2
cosh

lix
L

� �
� cos

lix
L

� �
� si sinh

lix
L

� �
� sin

lix
L

� �� �� �
; (4.11)

where i is the mode shape number, x is the distance along the beam of length L,
and the constants li and si are provided in Table 4.1. The code used to produce

Figs. 4.3 and 4.4 is provided in MATLAB® MOJO 4.1. Note that Eq. 4.11 is normalized

to have a value of one at the free end of the cantilever.

MATLAB
®

 MOJO 4.1 
% matlab_mojo_4_1.m

clc
clear all
close all

% define variables
L = 1;                  % m
x = 0:0.001:L;

% define first mode shape
lambda = 1.87510407;
sigma = 0.734095514;
psi = (cosh(lambda*x/L) - cos(lambda*x/L) - sigma*( sinh(lambda*x/L) - 
sin(lambda*x/L)))/2;

figure(1)
plot(x, psi, 'k-')
set(gca,'FontSize', 14)
axis([0 1 0 1.1])
xlabel('x/L')
ylabel('\psi_1')

index = find(x == 0.5);
psi(index)

% define second mode shape
lambda = 4.69409113;
sigma = 1.018467319;
psi = -(cosh(lambda*x/L) - cos(lambda*x/L) - sigma* (sinh(lambda*x/L) - 
sin(lambda*x/L)))/2;

figure(2)
plot(x, psi, 'k-')
set(gca,'FontSize', 14)
axis([0 1 -0.8 1.1])
xlabel('x/L')
ylabel('\psi_2')

index = find(x == 0.5);
psi(index)
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In order to determine the eigenvalues of a system model, we set the determinant

of the matrix form for the equations of motion equal to zero; see Eq. 4.6. This means

that the two equations (one for each of the two degrees of freedom) are linearly
dependent. We can think about linear dependence in the following way. If you were

given directions from the grocery store to the library that said “go north three blocks

and then go west four blocks,” this would provide all the necessary information to

reach the library. The two statements for the north and west travel cannot be

described in terms of the other; they are linearly independent. However, if the

directions were augmented to be “go north three blocks and then go west four

blocks; the library is five blocks northwest of the grocery store,” then the final

statement is not independent of the first two. These three statements are linearly

dependent because they give redundant information; one of the three is not required

(http://en.wikipedia.org/wiki/Linear_independence).

Because the two equations in Eq. 4.6 are linearly dependent, we can select either

one to determine the two eigenvectors. They will both give the same result. For the

two-degree-of-freedom model in Fig. 4.2, we have:

m1 0

0 m2

� �
s2 þ k1 þ k2 �k2

�k2 k2

� �� �
X1

X2

� �
¼ 0

0

� �
: (4.12)

The top row equation, which corresponds to motion of the top mass, is:

m1s
2 þ k1 þ k2

� �
X1 þ �k2ð ÞX2 ¼ 0: (4.13)

The bottom row equation, which corresponds to motion of the bottom mass, is:

�k2ð ÞX1 þ m2s
2 þ k2

� �
X2 ¼ 0: (4.14)

We can pick either Eq. 4.13 or 4.14 to determine the two eigenvectors – one

eigenvector for s21 and one for s
2
2. We can also choose to normalize our eigenvectors

to either coordinate x1 or x2. We generally select the coordinate that is of most

interest for the particular application (such as the end of the cantilever beam as

in the previous example). To normalize to x1, we need the ratio
X2

X1
. Using Eq. 4.13,

we have:

X2

X1

¼ m1s
2 þ k1 þ k2

k2
: (4.15)

Table 4.1 Constants for

cantilever beam mode shape

calculation in Eq. 4.11

(Blevins 2001)

Mode i li si
1 1.87510407 0.734095514

2 4.69409113 1.018467319
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The corresponding eigenvector expression is:

c1;2 ¼
X1

X1

X2

X1

8>><
>>:

9>>=
>>;

¼
1

m1s
2
1;2 þ k1 þ k2

k2

8<
:

9=
;; (4.16)

where we substitute s21 to find the first eigenvector, C1, and s22 to find the second

eigenvector, C2. As described previously, C1 describes the relative magnitude of

the coordinates for vibration at the first natural frequency and C2 describes

the relative magnitude of the coordinates for vibration at the second natural

frequency. We would obtain exactly the same results using Eq. 4.14. In this case,

the ratio is:

X2

X1

¼ k2
m2s2 þ k2

: (4.17)

In order to normalize to x2, the required ratio is X1

X2
. Using Eq. 4.13, we

find that:

X1

X2

¼ k2
m1s2 þ k1 þ k2

: (4.18)

The eigenvector expression for normalization to x2 is:

C1;2 ¼
X1

X2

X2

X2

8>><
>>:

9>>=
>>;

¼
k2

m1s21;2 þ k1 þ k2

1

8><
>:

9>=
>;: (4.19)

Again, substituting s21 gives the first eigenvector, C1, and substituting s22 gives

the second eigenvector, C2. We would obtain the same eigenvectors using

Eq. 4.14, where the ratio is:

X1

X2

¼ m2s
2 þ k2
k2

: (4.20)

For a two degree of freedom system, there are two eigenvectors. The first

corresponds to vibration at on1 and the second to vibration at on2. The system

vibration (due to some set of initial conditions) occurs in: (1) the first mode shape;

(2) the second mode shape; or (3) a linear combination of the two. The latter is

the general result, but the final behavior depends on the initial conditions.
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IN A NUTSHELL We have seen that free vibration for a single

degree of freedom system always occurs at the system’s natural

frequency. In a two degree of freedom system, the motion may occur

at the first natural frequency with the first mode shape, at the second

natural frequency with the second mode shape, or in a linear

combination of the two modes simultaneously, depending on the initial conditions.

No other motions are possible in free vibration.

By the Numbers 4.1

Consider the two degree of freedom system shown in Fig. 4.6. This is the same

model we used in Fig. 4.2, so we can write the equations of motion in matrix

form directly.

1 0

0 0:5

� �
€x1
€x2

� �
þ 1� 107 þ 2� 107 �2� 107

�2� 107 2� 107

� �
x1
x2

� �
¼ 0

0

� �

We should note here that as long as the coordinates are measured with respect

to ground, the mass and stiffness matrices are always symmetric. In other words, the
off-diagonal terms are equal: m 1; 2ð Þ ¼ m 2; 1ð Þ and k 1; 2ð Þ ¼ k 2; 1ð Þ. Alternately,

m1
x1

m2

k2

x2

k1

m1 = 1 kg 

m2 = 0.5 kg 

k1 = 1×107 N/m

k2 = 2×107 N/m 

x1(0) = 0

x1(0) = 1 mm 

x2(0) = 0

x2(0) = −1 mm 

Fig. 4.6 By the
Numbers 4.1 – Example two

degree of freedom model with

parameters and initial

conditions
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we can write:m12 ¼ m21 and k12 ¼ k21 to denote the symmetry. Validating symmetry

for the mass and stiffness matrices provides a good check for the equations of motion.

Using the Laplace notion for our (assumed) harmonic solution and substituting

gives the characteristic equation:

1s2 þ 3� 107 �2� 107

�2� 107 0:5s2 þ 2� 107










 ¼ 0:

Calculating the determinant gives:

1s2 þ 3� 107
� �

0:5s2 þ 2� 107
� �� �2� 107

� � �2� 107
� � ¼ 0:

This equation can be expanded and grouped to obtain:

0:5s4 þ 3:5� 107s2 þ 2� 1014 ¼ 0:

Using the quadratic equation, the roots (eigenvalues) are:

s21;2 ¼
�3:5� 107 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:5� 107
� �2 � 4 0:5ð Þ2� 1014

q
2 0:5ð Þ

¼ �3:5� 107 � 2:872� 107:

This gives s21 ¼ �3:5þ 2:872ð Þ � 107 ¼ �6:28� 106 ¼ �o2
n1 and the first natural

frequency is on1 ¼ 2; 506 rad/s. The second eigenvalue is s22 ¼ �3:5�ð 2:872Þ �
107 ¼ �6:37� 107 ¼ �o2

n2 and the second natural frequency is on2 ¼
7;981 rad/s. Note that on1 <on2. We can also express these natural frequencies

in units of Hz: fn1 ¼ on1

2p ¼ 398:8 Hz and fn2 ¼ on2

2p ¼ 1; 270 Hz.

To determine the eigenvectors, let’s arbitrarily choose the top equation of

motion and normalize to coordinate x2. The eigenvector equation is:

1s2 þ 3� 107
� �

X1 þ �2� 107
� �

X2 ¼ 0;

and the required ratio is:

X1

X2

¼ 2� 107

1s2 þ 3� 107
:

Substituting s21 ¼ �6:28� 106 gives:

X1

X2






s2
1

¼ X11

X21

¼ 2� 107

1 �6:28� 106
� �þ 3� 107

¼ 0:843;
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where the first subscript in X11

X21
identifies the coordinate number and the second

subscript gives the mode number. Because we normalized to coordinate x2, the first
eigenvector is therefore:

c1 ¼
X11

X21

1

8<
:

9=
; ¼ 0:843

1

( )
:

The ratio for the second eigenvector is calculated by substituting

s22 ¼ �6:37� 107.

X1

X2






s2
2

¼ X12

X22

¼ 2� 107

1 �6:37� 107
� �þ 3� 107

¼ �0:593

The second eigenvector is:

c2 ¼
X12

X22

1

8<
:

9=
; ¼ �0:593

1

( )
:

These mode shapes are demonstrated graphically in Fig. 4.7. For the model type

pictured in Fig. 4.6 with the eigenvalues ordered such that on1 <on2, the vibration

of coordinates x1 and x2 are always in phase for the first mode shape and always out
of phase for the second mode shape.

How would the mode shapes have changed if we had normalized to coordinate

x1? In this case, we require the ratio:

X2

X1

¼ 1s2 þ 3� 107

2� 107
:

x1

x2

First mode shape Second mode shape 

1 

0.843 

x1

x2

1 

−0.593 

Fig. 4.7 By the Numbers 4.1 – Mode shapes for the example two-degree-of-freedom system
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Using the first eigenvalue, s21 ¼ �6:28� 106, we obtain:

X21

X11

¼ 1 �6:28� 106
� �þ 3� 107

2� 107
¼ 1:186;

and the first eigenvector is:

c1 ¼
1

X21

X11

8<
:

9=
; ¼ 1

1:186

( )
:

Note that 1.186 is simply the reciprocal of 0.843, which we calculated when

normalizing to x2. Similarly, if we use the second eigenvalue, s22 ¼ �6:37� 107,

we obtain:

X22

X12

¼ 1 �6:37� 107
� �þ 3� 107

2� 107
¼ �1:686;

and the second eigenvector is:

c2 ¼
1

X22

X12

8<
:

9=
; ¼ 1

�1:686

( )
:

Again, �1.686 is the reciprocal of �0.593, which we determined by normaliz-

ing to x2.

4.3 Time-Domain Solution

Let’s now find the time-domain responses, x1ðtÞ and x2ðtÞ, for the system in Fig. 4.6

(By the Numbers 4.1). As we saw in Eq. 2.12 for the free vibration of single degree

of freedom systems, the total response is the sum of all possible solutions. For each

of the eigenvalues, there are two roots and, therefore, two solutions. For the first

eigenvalue, we have s1a ¼ þion1 and s1b ¼ �ion1. For the second eigenvalue, we

have s2a ¼ þion2 and s2b ¼ �ion2. For x1ðtÞ, the sum of the harmonic solutions

that correspond to these four roots is:

x1ðtÞ ¼ X11e
ion1t þ X�

11e
�ion1t þ X12e

ion2t þ X�
12e

�ion2t; (4.21)

where the first two terms represent motion of the top coordinate from Fig. 4.6 in

the first natural frequency, the second two identify motion in the second natural

frequency, and X11 and X
�
11, as well as X12 and X

�
12, are complex conjugates (they are
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identical except for the sign of their imaginary parts). Similarly, the time response

x2ðtÞ, which describes the motion of the bottom coordinate, has four terms:

x2ðtÞ ¼ X21e
ion1t þ X�

21e
�ion1t þ X22e

ion2t þ X�
22e

�ion2t: (4.22)

From By the Numbers 4.1, the natural frequencies are on1 ¼ 2; 506 rad/s and

on2 ¼ 7; 981 rad/s. Substituting in Eqs. 4.20 and 4.21 yields:

x1ðtÞ ¼ X11e
i2;506t þ X�

11e
�i2;506t þ X12e

i7;981t þ X�
12e

�i7;981t

and

x2ðtÞ ¼ X21e
i2;506t þ X�

21e
�i2;506t þ X22e

i7;981t þ X�
22e

�i7;981t:

The velocities are determined by calculating the time derivatives.

_x1ðtÞ ¼ i2;506 X11e
i2;506t � X�

11e
�i2;506t

� �þ i7; 981 X12e
i7;981t � X�

12e
�i7;981t

� �
_x2ðtÞ ¼ i2;506 X21e

i2;506t � X�
21e

�i2;506t
� �þ i7; 981 X22e

i7;981t � X�
22e

�i7;981t
� �

We can now apply the initial conditions specified in Fig. 4.6.

x1ð0Þ ¼ X11 þ X�
11 þ X12 þ X�

12 ¼ 1 mm

x2ð0Þ ¼ X21 þ X�
21 þ X22 þ X�

22 ¼ �1 mm

_x1ð0Þ ¼ i2;506 X11 � X�
11

� �þ i7;981 X12 � X�
12

� � ¼ 0

_x2ð0Þ ¼ i2;506 X21 � X�
21

� �þ i7;981 X22 � X�
22

� � ¼ 0

We have a problem, though. There are four equations, but eight unknowns.

We can remove this obstacle, however, by applying the eigenvector relationships.

From our previous analysis (normalizing to x2), we found that X11

X21
¼ 0:843

and X12

X22
¼ �0:593. Rearranging gives X11 ¼ 0:843X21 and X12 ¼ �0:593X22.

Substituting these relationships gives a system of four equations with four unknowns.

0:843X21 þ 0:843X�
21 � 0:593X22 � 0:593X�

22 ¼ 1 mm

X21 þ X�
21 þ X22 þ X�

22 ¼ �1 mm

i2;506 0:843ð Þ X21 � X�
21

� �þ i7;981 �0:593ð Þ X22 � X�
22

� � ¼ 0

i2;506 X21 � X�
21

� �þ i7;981 X22 � X�
22

� � ¼ 0

140 4 Two Degree of Freedom Free Vibration



www.manaraa.com

We can write these four equations in matrix form.

0:843 0:843 �0:593 �0:593

1 1 1 1

i2;112 �i2;112 �i4;733 i4;733

i2;506 �i2;506 i7;981 �i7;981

2
66664

3
77775

X21

X�
21

X22

X�
22

8>>>><
>>>>:

9>>>>=
>>>>;

¼

1

�1

0

0

8>>>><
>>>>:

9>>>>=
>>>>;

We need to solve for the magnitude vector composed of X21, X
�
21, X22, and X�

22.

Like we saw in Sect. 2.4.5, we can invert the A matrix in the AX ¼ B equation to

determine X ¼ A�1B. We can complete this operation at the MATLAB® command

prompt (�) using the following statements.

>> A = [0.843 0.843 -0.593 -0.593;1 1 1 1;i*2112 -i*2112 -i*4733 i*4733;
i*2506 -i*2506 i*7981 -i*7981] 

A = 

  1.0e+003 * 

   0.0008             0.0008            -0.0006            -0.0006
   0.0010             0.0010             0.0010             0.0010           
        0 + 2.1120i        0 - 2.1120i        0 - 4.7330i        0 + 4.7330i
        0 + 2.5060i        0 - 2.5060i        0 + 7.9810i        0 - 7.9810i

>> B = [1 -1 0 0]'

B = 

     1 
    -1 
     0 
     0 

The 0 operator here indicates that the transpose operation is to be performed on

the B vector. The transpose operator switches the rows and columns for a matrix.

In this case, with only one row, the row becomes the only column. Alternately,

B could have been defined using B ¼ [1; -1; 0; 0].

>> X = inv(A)*B 

X = 

    0.1417 
    0.1417 
   -0.6417 
   -0.6417 

Now that we know X21, X
�
21, X22, and X�

22, we can again use the eigenvector

relationships to determine X11, X
�
11, X12, and X�

12.

X11 ¼ 0:843X21 ¼ 0:843 0:1417ð Þ ¼ 0:1195 ¼ X�
11

X12 ¼ �0:593X22 ¼ �0:593 �0:6417ð Þ ¼ 0:3805 ¼ X�
12
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The complex conjugates are real-valued and equal in this case because there

is no damping in the model. Substituting the coefficients into the original x1
equation gives:

x1ðtÞ ¼ 0:1195ei2;506t þ 0:1195e�i2;506t þ 0:3805ei7;981t þ 0:3805e�i7;981t:

Using Eq. 1.12 (2 cos yð Þ ¼ eiy þ e�iy), we can rewrite the x1 time response as:

x1ðtÞ ¼ 0:2390 cos 2;506tð Þ þ 0:761 cos 7;981tð Þ;

where the first term describes the portion of the motion oscillating at on1 and the

second describes the portion oscillating at on2. With a two degree of freedom

system, we can have free oscillation in both natural frequencies.

Similarly, for x2 we have:

x2ðtÞ ¼ 0:1417ei2506t þ 0:1417e�i2506t � 0:6417ei7981t � 0:6417e�i7981t:

Again applying Eq. 1.12, we can alternately express this result as:

x2ðtÞ ¼ 0:2834 cos 2; 506tð Þ � 1:2834 cos 7; 981tð Þ:

Viewing the time-domain responses for coordinates x1 and x2, we see that

the two degree of freedom system vibrates in a linear combination of the two

mode shapes at the two corresponding natural frequencies. These results are

displayed in Fig. 4.8, which was generated using the code in MATLAB® MOJO 4.2.

0 0.002 0.004 0.006 0.008 0.01
−2

0

2

x 1
 (

m
m

)
x 2

 (
m

m
)

0 0.002 0.004 0.006 0.008 0.01
−2

0

2

t (s)

Fig. 4.8 Time-domain responses for the two degree of freedom system described in Fig 4.6
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MATLAB
®

 MOJO 4.2 
% matlab_mojo_4_2.m

clc
clear all
close all

% define variables
t = 0:1e-5:0.01;  % s

% define functions
x1 = 0.2390*cos(2506*t) + 0.761*cos(7981*t);    % mm
x2 = 0.2834*cos(2506*t) - 1.2834*cos(7981*t);

figure(1)
subplot(211)
plot(t, x1, 'k-')
set(gca,'FontSize', 14)
axis([0 0.01 -2 2])
ylabel('x_1 (mm)')
subplot(212)
plot(t, x2, 'k-')
set(gca,'FontSize', 14)
axis([0 0.01 -2 2])
xlabel('t (s)')
ylabel('x_2 (mm)')

Now let’s consider a three degree of freedom system; see Fig. 4.9. The equations

of motion are:

m1€x1 þ k1 þ k2ð Þx1 � k2x2 ¼ 0

m2€x2 þ k2 þ k3ð Þx2 � k2x1 � k3x3 ¼ 0

m3€x3 þ k3x3 � k3x2 ¼ 0 ð4:23Þ

for the three masses from top to bottom, respectively. In matrix form, these

equations are written as:

m1 0 0

0 m2 0

0 0 m3

2
4

3
5 €x1

€x2
€x3

8<
:

9=
;þ

k1 þ k2 �k2 0

�k2 k2 þ k3 �k3
0 �k3 k3

2
4

3
5 x1

x2
x3

8<
:

9=
; ¼

0

0

0

8<
:

9=
;; (4.24)

where the mass and stiffness matrices are symmetric as we discussed previously.

For harmonic vibration, we can assume the solution form x ¼ Xest. Substituting for

displacement and acceleration, €x ¼ s2Xest, gives:

m1 0 0

0 m2 0

0 0 m3

2
4

3
5s2 þ

k1 þ k2 �k2 0

�k2 k2 þ k3 �k3
0 �k3 k3

2
4

3
5

2
4

3
5 X1

X2

X3

8<
:

9=
;est ¼

0

0

0

8<
:

9=
;; (4.25)
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and the characteristic equation is:

m1 0 0

0 m2 0

0 0 m3

2
4

3
5s2 þ

k1 þ k2 �k2 0

�k2 k2 þ k3 �k3
0 �k3 k3

2
4

3
5














 ¼ 0: (4.26)

Calculating the determinant, we obtain an equation that is now cubic in s2 so that
we obtain three eigenvalues (i.e., the roots of the characteristic equation): s21, s

2
2,

and s23. We use these eigenvalues to determine the three associated eigenvectors.

To find the time-domain responses, we can follow the same steps as for the two

degree of freedom system. Recall that in order to find X11, X12, X21, and X22 (and

their complex conjugates), it was necessary to invert a 22 � 22 ¼ 4� 4 matrix.

For the three degree of freedom system, we would need to invert a 32 � 32 ¼ 9� 9

matrix. For large structures, 50 degrees of freedom or more may be necessary to

fully describe the complicated system behavior. In this case, we’d have to invert a

502 � 502 ¼ 2;500� 2;500 matrix. The “squared” scaling on our matrix size is

m1
x1

k1

m2 x2

k2

m3 x3

k2

m1

k1x1m1x1

m2x2

m3x3

m2 

k2 (x2 − x1)

k3 (x3 − x2)

m3 

Fig. 4.9 Three degree of

freedom system with

associated free body diagrams
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clearly computationally unfriendly. Fortunately, there is an alternative to this

approach. It is called modal analysis and we will discuss it next.

IN A NUTSHELL Using this approach, we also have a problem

computing the determinant and finding the roots of the characteristic

equation. For a three degree of freedom system, the characteristic

equation is cubic and explicit solutions exist for the roots, similar to

the quadratic equation. If we had a four degree of freedom system

however, we’d have to resort to numerical techniques to find the roots. If we had 50

degrees of freedom, then the characteristic equation would have the form

As100 þ Bs98 þ � � � ¼ 0. This would be difficult to formulate and solve indeed.

4.4 Modal Analysis

In this approach, the local (i.e., the model or physical) coordinates are transformed

into modal coordinates. While the modal coordinate system does not have a

physical basis, it does provide a coordinate frame where the individual degrees of

freedom are uncoupled.

IN A NUTSHELL There are many choices of coordinates that can

be used to describe a physical system. Some of them are “easier”

than others to derive and some are more convenient mathematically.

The modal coordinate system is mathematically easy because it

“decouples” a multiple degree of freedom system into separate

single degree of freedom systems.

Figure 4.10 demonstrates the modal coordinate concept, where the local

coordinate system gives a stiffness matrix that is coupled. This coupling, or

dependence of the response of x1 on x2 and vice versa, is manifested by the stiffness

matrix with nonzero off-diagonal terms. Alternately, the modal coordinate system

yields an uncoupled modal stiffness matrix and two separate single degree of

freedom systems; note the new modal coordinates q1 and q2 and modal mass and

stiffness values identified by the q subscripts in Fig. 4.10. The single degree of

freedom free and forced vibration solutions we discussed in Chap. 2 and 3 can

therefore be applied individually to each single degree of freedom system. Eureka1!

Once the solutions are determined in modal coordinates, they are transformed back

1 The Greek scholar Archimedes is historically credited with this interjection. As the story goes, he
noticed that the water level rose in proportion to his body’s volume when he stepped into a bath.

The account continues that he was so excited by this discovery that he ran through the streets of

Syracuse naked (http://en.wikipedia.org/wiki/Eureka_(word)). Typical engineer!
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into local coordinates for the final result. In order to convert between the two

coordinate systems, the modal matrix, P, is applied. Its columns are the ordered

system eigenvectors. The first column is the first eigenvector (that corresponds to

the first, lowest natural frequency). The second column is the second eigenvector,

and so on. The modal matrix is always a square matrix; the number or rows is equal

to the number of columns. See Eq. 4.27.

P ¼ c1 c2 . . .½ � (4.27)

Let’s complete an example to demonstrate the modal analysis procedure.

We will use a two degree of freedom system that can be described by the two

equations of motion:

0:05€x1 � 0:05€x2 þ 10 _x1 þ 1� 105x1 ¼ 0

0:25€x2 � 0:05€x1 þ 20 _x2 þ 2� 105x2 ¼ 0;

which are written in matrix form as:

0:05 �0:05
�0:05 0:25

� �
€x1
€x2

� �
þ 10 0

0 20

� �
_x1
_x2

� �
þ 1� 105 0

0 2� 105

� �
x1
x2

� �
¼ 0

0

� �
:

m1x1

k1 

m2

k2

x2 

k1+k2

−k2

−k2

k2

kq1

kq2

0

0

Local coordinates 

q1
q2

kq1

mq1 mq2

kq2

Modal coordinates 

Fig. 4.10 Comparison of local and modal coordinates for a two degree of freedom system
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These equations of motion do not represent a chain-type system, as shown

in Fig. 4.2. They are coupled in the mass matrix, not the stiffness or damping

matrices. However, the modal analysis procedure still works in the same way.

The mass, damping, and stiffness matrices are m¼ 0:05 �0:05

�0:05 0:25

� �
kg, c¼

10 0

0 20

� �
N-s/m, and k¼ 1�105 0

0 2�105

� �
N/m. The initial conditions are x1ð0Þ¼x2ð0Þ¼

1mm and _x1ð0Þ¼ _x2ð0Þ¼0ismissingitsunit. _x1ð0Þ¼ _x2ð0Þ¼0.

In order to carry out the modal analysis approach, proportional damping
is required. Mathematically, proportional damping exists if the damping matrix

can be written as a linear combination of the mass and stiffness matrices:

c½ � ¼ a m½ � þ b k½ �, where a and b are real numbers. Physically, proportional

damping means that the individual modes reach their maximum values at the

same time. They are either exactly in phase or exactly out of phase. While this

is not true for all systems, it is a good approximation for those with low damping

(as we typically observe for mechanical structures).

For the example we are considering here, c½ � ¼ a m½ � þ b k½ � is true when a ¼ 0

and b ¼ 1
1�104

. Given that the proportional damping requirement is satisfied, we can

neglect damping to find the eigensolution. For the eigenvalues, we need the

characteristic equation. In this case, it is:

m½ �s2 þ k½ �

 

 ¼ 0:05 �0:05
�0:05 0:25

� �
s2 þ 1� 105 0

0 2� 105

� �








 ¼ 0:

Calculating the determinant gives 0:01s4 þ 3:5� 104s2 þ 2� 1010 ¼ 0. Using

the quadratic equation, the roots are determined using:

s21;2 ¼
�3:5� 104 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:5� 104
� �2 � 4 0:01ð Þ2� 1010

q
2 0:01ð Þ

¼ �1:75� 106 � 1:031� 106:

The first eigenvalue is s21 ¼ �1:75� 106 þ 1:031� 106 ¼ �7:19� 105 ¼ �o2
n1

and the second eigenvalue is s22 ¼ �1:75� 106 � 1:031� 106 ¼ �2:781� 106 ¼
�o2

n2. The corresponding natural frequencies are on1 ¼ 847:9 rad/s and on2 ¼
1667:6 rad/s. Note that on1 <on2. In units of Hz, the natural frequencies are

fn1 ¼ on1

2p ¼ 134:95 Hz and fn2 ¼ on2

2p ¼ 265:41 Hz.

To find the eigenvectors, we can choose either equation of motion and again

neglect damping. The Laplace-domain representation for the equations of motion is:

m½ �s2 þ k½ �� 	
~X

� � ¼ 0:05 �0:05
�0:05 0:25

� �
s2 þ 1� 105 0

0 2� 105

� �� �
X1

X2

� �
¼ 0

0

� �
:
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Arbitrarily selecting the top equation gives:

0:05s2 þ 1� 105
� �

X1 � 0:05s2X2 ¼ 0:

If we wish to normalize to coordinate x2, we require the ratio:

X1

X2

¼ 0:05s2

0:05s2 þ 1� 105
:

To find the first eigenvector, c1, substitute s
2
1 ¼ �7:19� 105 to obtain:

c1 ¼
X11

X21

1

8<
:

9=
; ¼

0:05s21
0:05s21 þ 1� 105

1

8><
>:

9>=
>; ¼

�0:561

1

( )
:

This eigenvector represents the relative magnitudes of X1 and X2 for vibration

at on1. The first eigenvector gives motion that is out of phase in this case because

the model is not a chain-type system. We find the second eigenvector, c2,

by substituting s22 ¼ �2:781� 106 to obtain:

c2 ¼
X12

X22

1

8<
:

9=
; ¼

0:05s22
0:05s22 þ 1� 105

1

8><
>:

9>=
>; ¼

3:56

1

( )
:

We see that the relative motion for vibration aton2 is in phase and the magnitude

of motion at X1 is 3.56 times larger than the motion at X2. We can now write

the modal matrix, P.

P ¼ �0:561 3:56
1 1

� �

The relationship between the local and modal coordinates depends on P.

~xf g ¼ P½ � ~qf g
~_x

n o
¼ P½ � ~_q

n o

~€x
n o

¼ P½ � ~€q
n o

ð4:28Þ

To transform from local coordinates to modal coordinates, where the degrees

of freedom are uncoupled, we substitute for x and its time derivatives in the system

equation of motion using Eq. 4.28.

m½ � ~€x
n o

þ c½ � ~_x
n o

þ k½ � ~xf g ¼ 0f g

m½ � P½ � ~€q
n o

þ c½ � P½ � ~_q
n o

þ k½ � P½ � ~qf g ¼ 0f g (4.29)
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If we now premultiply2 each term in Eq. 4.29 by the transpose of the modal

matrix, PT¼ �0:561 3:56

1 1

� �T
¼ �0:561 1

3:56 1

� �
, we obtain the mass, damping, and stiff-

ness matrices in modal coordinates. This process is referred to as diagonalization.

P½ �T m½ � P½ � ~€q
n o

þ P½ �T c½ � P½ � ~_q
n o

þ P½ �T k½ � P½ � ~qf g ¼ 0f g

mq

� 	
~€q

n o
þ cq
� 	

~_q
n o

þ kq
� 	

~qf g ¼ 0f g ð4:30Þ

The modal matrices, mq

� 	
, cq
� 	

, and kq
� 	

, are diagonal matrices – their off-

diagonal terms are zero. This yields uncoupled equations of motion.

mq

� 	 ¼ P½ �T m½ � P½ � ¼ mq1 0

0 mq2

� �
(4.31)

cq
� 	 ¼ P½ �T c½ � P½ � ¼ cq1 0

0 cq2

� �
(4.32)

kq
� 	 ¼ P½ �T k½ � P½ � ¼ kq1 0

0 kq2

� �
(4.33)

The two new equations of motion in modal coordinates are:

mq1€q1 þ cq1 _q1 þ kq1q1 ¼ 0

mq2€q2 þ cq2 _q2 þ kq2q2 ¼ 0: ð4:34Þ

Like the single degree of freedom free vibration systems we studied in Chap. 2,

we require the initial conditions in order to solve these differential equations for the

time responses q1ðtÞ and q2ðtÞ. However, we now require these initial conditions

to be in modal coordinates. We determine the required initial conditions by

rearranging Eq. 4.28. See Eq. 4.35, where the zero subscript denotes the value

when the time is zero.

~q0f g ¼ P½ ��1 ~x0f g
~_q0

n o
¼ P½ ��1 ~_x0

n o
ð4:35Þ

2Matrix multiplication is not commutative, in general, so the order of multiplication matters. The

term premultiply means the term appears on the left of the product. The term postmultiply means

that the term appears on the right.
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As we saw in Chap. 2, we can express the damped free vibration response in

various forms. One possible form is:

q1ðtÞ ¼ e�zq1on1t A1 cos od1tð Þ þ B1 sin od1tð Þð Þ; (4.36)

which describes motion in the first natural frequency, but note that this motion is not

associated with any physical coordinate. In Eq. 4.36, the modal damping ratio is

zq1 ¼ cq1

2
ffiffiffiffiffiffiffiffiffiffi
mq1kq1

p and the modal damped natural frequency is od1 ¼ on1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2q1

q
.

For vibration in the second natural frequency, the response is:

q2ðtÞ ¼ e�zq2on2t A2 cos od2tð Þ þ B2 sin od2tð Þð Þ; (4.37)

where zq2 ¼ cq2

2
ffiffiffiffiffiffiffiffiffiffi
mq2kq2

p and od2 ¼ on2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2q2

q
. To complete the solution, we must

transform back into local coordinates.

x1
x2

� �
¼ P½ � q1

q2

� �
(4.38)

For our example, we have that P¼ �0:561 3:56

1 1

� �
and PT¼ �0:561 1

3:56 1

� �
. The modal

mass matrix is then:

mq

� 	 ¼ P½ �T m½ � P½ � ¼ �0:561 1

3:56 1

� �
0:05 �0:05
�0:05 0:25

� � �0:561 3:56
1 1

� �
:

Here, we have to multiply three matrices. Matrix multiplication for 2 � 2

matrices can be completed, as shown in Eq. 4.39. For example, the (1,1) term for

the product is the first row of the left matrix multiplied in a term-by-term fashion

by the first column of the right matrix.

a b
c d

� �
e f
g h

� �
¼ aeþ bg af þ bh

ceþ dg cf þ dh

� �
(4.39)

Let’s now calculate the modal mass matrix. First, we will multiply the left and

middle matrices. Then, we multiply the two remaining matrices.

mq

� 	 ¼ �0:0781 0:2781
0:128 0:072

� � �0:561 3:56
1 1

� �
¼ 0:322 0

0 0:528

� �
kg

Similarly, the modal stiffness matrix is:

kq
� 	 ¼ P½ �T k½ � P½ � ¼ �0:561 1

3:56 1

� �
1� 105 0

0 2� 105

� � �0:561 3:56
1 1

� �
:
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Performing the matrix multiplications yields3:

kq
� 	 ¼ 2:32� 105 0

0 1:47� 106

� �
N=m:

Because the undamped natural frequencies are the same in local and modal

coordinates, we can check our results so far. For the first natural frequency,

substitution gives:

on1 ¼
ffiffiffiffiffiffiffiffi
kq1
mq1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:32� 105

0:322

s
¼ 848:8 rad=s:

The value we obtained from the (local coordinates) eigenvalue was 847.9 rad/s.

The difference is due to round-off error, but the results match well enough to

validate our modal values. For the second natural frequency, we have:

on2 ¼
ffiffiffiffiffiffiffiffi
kq2
mq2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:46� 106

0:528

s
¼ 1; 668:6 rad=s,

where the result from the second eigenvalue (determined from local coordinates)

was 1667.6 rad/s.

We can calculate the modal damping matrix in two ways. First, we can simply

perform the matrix multiplications:

cq
� 	 ¼ P½ �T c½ � P½ � ¼ �0:561 1

3:56 1

� �
10 0

0 20

� � �0:561 3:56
1 1

� �

¼ 23:15 0

0 146:7

� �
N-s=m:

Second, we can use the proportional damping relationship:

cq
� 	 ¼ a mq

� 	þ b kq
� 	 ¼ 0 � mq

� 	þ 1

1� 104
kq
� 	 ¼ 23:15 0

0 146:7

� �
N-s=m:

We can now calculate the modal damping ratios and corresponding damped

natural frequencies.

zq1 ¼
cq1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mq1kq1

p ¼ 23:5

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:322 2:32� 105

� �q ¼ 0:042

3Due to round-off error, the off-diagonal terms in the modal matrices may not be identically zero.

However, they will be significantly smaller than the on-diagonal terms.
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zq2 ¼
cq2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mq2kq2

p ¼ 146:7

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:528 1:47� 106

� �q ¼ 0:083

od1 ¼ on1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2q1

q
¼ 847:2 rad=s

od2 ¼ on2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2q2

q
¼ 1661:5 rad=s

As shown in Eqs. 4.36 and 4.37, one form for the underdamped single degree

of freedom vibration solution is:

qðtÞ ¼ e�zqont A cos odtð Þ þ B sin odtð Þð Þ: (4.40)

To determine the coefficients, we first calculate the velocity and then apply the

initial conditions qð0Þ ¼ q0 and _qð0Þ ¼ _q0. The velocity is:

_qðtÞ ¼ zqone
�zqont A cos odtð Þ þ B sin odtð Þð Þ

þ e�zqont �odA sin odtð Þ þ odB cos odtð Þð Þ: (4.41)

Substituting t ¼ 0 in Eqs. 4.40 and 4.41 and using the initial conditions,

we obtain Eqs. 4.42 and 4.43.

q1ðtÞ ¼ e�zq1on1t q01 cos od1tð Þ þ _q01 þ zq1on1q01
� �

od1
sin od1tð Þ

� �
(4.42)

q2ðtÞ ¼ e�zq2on2t q02 cos od2tð Þ þ _q02 þ zq2on2q02
� �

od2
sin od2tð Þ

� �
(4.43)

In order to calculate the initial displacement and velocities in modal coordinates,

we use Eq. 4.35.

q01
q02

� �
¼ P½ ��1 x01

x02

� �
¼ �0:561 3:56

1 1

� ��1
1

1

� �

_q01
_q02

� �
¼ P½ ��1 _x01

_x02

� �
¼ �0:561 3:56

1 1

� ��1
0

0

� �

To invert the 2 � 2 modal matrix, we complete three steps: (1) switch the

on-diagonal terms; (2) change the signs of the off-diagonal terms; and (3) divide

the resulting matrix by the determinant of the original modal matrix.
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P½ ��1 ¼ �0:561 3:56
1 1

� ��1

¼

1 �3:56

�1 �0:561

" #

�0:561ð1Þ � 3:56ð1Þ ¼
�0:243 0:864

0:243 0:136

" #

Substitution gives
q01
q02

� �
¼ �0:243 0:864

0:243 0:136

" #
1

1

( )
¼ 0:621

0:379

( )
mm.

Because the initial velocities in local coordinates are zero, the initial velocities in

modal coordinates are also zero. The modal displacements from Eqs. 4.42 and 4.43

can now be determined.

q1ðtÞ ¼ e�35:95t 0:621 cos 847:2tð Þ þ 0:264 sin 847:2tð Þð Þ

q2ðtÞ ¼ e�139:05t 0:379 cos 1661:5tð Þ þ 0:0317 sin 1661:5tð Þð Þ

Finally, we must transform back into local coordinates using Eq. 4.38.

x1
x2

� �
¼ �0:561 3:56

1 1

� �
q1
q2

� �

Performing the matrix multiplication, we obtain the expressions for x1 and x2.

x1 ¼ �0:561q1 þ 3:56q2

x2 ¼ q1 þ q2

We see that x2 is the sum of the modal contributions q1 and q2. This result

is obtained because we normalized to coordinate x2 when we determined the

eigenvectors. Substituting for q1 and q2 gives the following results. Each response

is a linear combination of motion in both damped natural frequencies.

x1ðtÞ ¼ � 0:561e�35:95t 0:621 cos 847:2tð Þ þ 0:264 sin 847:2tð Þð Þ
þ 3:56e�139:05t 0:379 cos 1;661:5tð Þ þ 0:0317 sin 1;661:5tð Þð Þ

x2ðtÞ ¼ e�35:95t 0:621 cos 847:2tð Þ þ 0:264 sin 847:2tð Þð Þ
þ e�139:05t 0:379 cos 1;661:5tð Þ þ 0:0317 sin 1;661:5tð Þð Þ

IN A NUTSHELL We derive the equations of motion in local

coordinates, which make physical sense to us. We transform them

into modal coordinates, which are mathematically easy, since we

already know how to solve single degree of freedom problems. We

then transform back to local coordinates to express the final solution.

While this may not seem like a big time-saver for two degree of freedom systems,

the procedure does not get more complicated as the number of degrees of freedom

increases and its benefit becomes clearly apparent.
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Let’s review the modal analysis steps.

1. Write the equations of motion in matrix form.

2. Verify that proportional damping exists.

3. Neglect damping and write the characteristic equation m½ �s2 þ k½ �

 

 ¼ 0.

4. Calculate the eigenvalues (i.e., the roots of the characteristic equation). Using

the eigenvalues, determine the undamped natural frequencies s2i ¼ �o2
ni.

5. Select any one of the linearly dependent equations of motion to find the

eigenvectors (mode shapes). Normalize to the coordinate of interest (e.g., this

may be the location where it is desired to minimize the vibration magnitude).

6. Using the eigenvectors, assemble the modal matrix P ¼ c1 c2 . . .½ �.
7. Transform the equations of motion into (uncoupled) modal coordinates. The

diagonal modal mass, damping, and stiffness matrices are mq

� 	 ¼ P½ �T m½ � P½ �,
cq
� 	 ¼ P½ �T c½ � P½ �, and kq

� 	 ¼ P½ �T k½ � P½ �.
8. Write the solutions to the uncoupled (single degree of freedom) equations of

motion in modal coordinates. An example solution form is:

qðtÞ ¼ e�zqont q0 cos odtð Þ þ _q0 þ zqonq0
� �

od
sin odtð Þ

� �
:

Note that the initial conditions must be transformed into modal coordinates to

solve the equations of motion.

9. Transform back into local coordinates.

The reason that this approach works is that the eigenvectors possess a very

unique property. They are orthogonal with respect to the mass, damping, and

stiffness matrices. This is a generalization of the concept of perpendicularity.

More information is available in Appendix B.

By the Numbers 4.2

In By the Numbers 4.1, we determined the time responses for the two degree of

freedom system shown in Fig. 4.6. Let’s repeat this example, but now use modal

analysis. We will apply the modal analysis steps we just reviewed.

1. Write the equations of motion in matrix form.

1 0

0 0:5

� �
€x1
€x2

� �
þ 1� 107 þ 2� 107 �2� 107

�2� 107 2� 107

� �
x1
x2

� �
¼ 0

0

� �

2. Verify that proportional damping exists.

There is no damping in this example.

3. Neglect damping and write the characteristic equation.

1s2 þ 3� 107 �2� 107

�2� 107 0:5s2 þ 2� 107










 ¼ 0
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Calculating and simplifying the determinant gives:

0:5s4 þ 3:5� 107s2 þ 2� 1014 ¼ 0:

4. Calculate the eigenvalues and determine the undamped natural frequencies.

s21;2 ¼
�3:5� 107 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:5� 107
� �2 � 4 0:5ð Þ2� 1014

q
2 0:5ð Þ

¼ �3:5� 107 � 2:872� 107

The first eigenvalue is:

s21 ¼ �3:5þ 2:872ð Þ � 107 ¼ �6:28� 106 ¼ �o2
n1;

and the first natural frequency is on1 ¼ 2;506 rad/s. The second eigenvalue is:

s22 ¼ �3:5� 2:872ð Þ � 107 ¼ �6:37� 107 ¼ �o2
n2;

and the second natural frequency is on2 ¼ 7;981 rad/s.
5. Select one of the linearly dependent equations of motion to find the eigenvectors.

We will arbitrarily use the top equation and normalize to x2. The corresponding
ratio is:

X1

X2

¼ 2� 107

1s2 þ 3� 107
:

Substituting the first eigenvalue gives the first eigenvector.

c1 ¼
X11

X21

1

( )
¼

0:843

1

( )

Substituting the second eigenvalue gives the second eigenvector.

c2 ¼
X12

X22

1

( )
¼

�0:593

1

( )

6. Assemble the modal matrix.

P ¼ 0:843 �0:593
1 1

� �
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7. Transform the equations of motion into (uncoupled) modal coordinates. The

diagonal modal mass, damping, and stiffness matrices are mq

� 	 ¼ P½ �T m½ � P½ �,
cq
� 	 ¼ P½ �T c½ � P½ �, and kq

� 	 ¼ P½ �T k½ � P½ �.

mq

� 	 ¼ 0:843 �0:593
1 1

� �T
1 0

0 0:5

� �
0:843 �0:593
1 1

� �
¼ 1:211 0

0 0:852

� �
kg

kq
� 	 ¼ 0:843 �0:593

1 1

� �T
3� 107 �2� 107

�2� 107 2� 107

� �
0:843 �0:593
1 1

� �

¼ 7:6� 106 0

0 5:43� 107

� �
N=m

Actually, due to round-off error, the modal stiffness matrix off-diagonal terms

were kq12 ¼ 3� 103 N/m and kq21 ¼ 3:5� 104 N/m after the previous matrix

multiplications were completed. However, these values are two to four orders of

magnitude smaller than the on-diagonal terms and were neglected.

8. Write the solutions to the uncoupled (single degree of freedom) equations of

motion in modal coordinates. The equations of motion are:

1:211€q1 þ 7:6� 106q1 ¼ 0

0:852€q2 þ 5:43� 107q2 ¼ 0:

These equations are now uncoupled and represent two separate single degree of

freedom systems. As a check, let’s calculate the natural frequencies.

on1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7:6� 106

1:211

s
¼ 2; 505 rad=s

on2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:43� 107

0:852

s
¼ 7; 983 rad=s

These results match the natural frequencies obtained from the eigenvalues, as

they should. Natural frequencies are system properties that do not depend on

choice of coordinates. To solve the equations of motion, we require the initial

conditions in modal coordinates.

qðtÞ ¼ e�zqont q0 cos odtð Þ þ _q0 þ zqonq0
� �

od
sin odtð Þ

� �

Note that the initial conditions must be transformed into modal coordinates to

solve the equations of motion.
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q01
q02

� �
¼ P½ ��1 x01

x02

� �
¼ 0:843 �0:593

1 1

� ��1
1

�1

� �

The inverse of the modal matrix is:

P½ ��1 ¼
1 0:593
�1 0:843

� �

0:843ð1Þ � �0:593ð Þ1 ¼ 0:696 0:413
�0:696 0:587

� �
:

The initial displacements are therefore:

q01
q02

� �
¼ 0:696 0:413

�0:696 0:587

� �
1

�1

� �
¼ 0:283

�1:283

� �
mm:

The zero initial velocities in modal coordinates give zero initial velocities in

modal coordinates.

_q01
_q02

� �
¼ P½ ��1 0

0

� �
¼ 0

0

� �

For nondamping, one single degree of freedom vibration solution form is:

qðtÞ ¼ q0 cos ontð Þ þ _q0
on

sin ontð Þ:

Substituting the appropriate natural frequencies and initial conditions gives:

q1ðtÞ ¼ 0:283 cos 2;506tð Þ

and

q2ðtÞ ¼ �1:283 cos 7;981tð Þ:

9. Transform back into local coordinates using
x1
x2

� �
¼ 0:843 �0:593

1 1

� �
q1
q2

� �
.

The results are:

x1ðtÞ ¼ 0:239 cos 2;506tð Þ þ 0:761 cos 7;981tð Þ mm

and

x2ðtÞ ¼ 0:283 cos 2;506tð Þ � 1:283 cos 7;981tð Þ mm:
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Naturally, this is the same result that we obtained from the previous analysis.

However, we avoided the need to invert the 4 � 4 matrix. This is particularly

beneficial for models with many more degrees of freedom.

IN A NUTSHELL Note that the motion of the coordinate to which

the mode shapes are normalized is just the sum of the motions

expressed in modal coordinates. If you are concerned about the

motion of a particular point, simply normalize the mode shapes so

that their value is 1 at that coordinate.

Let’s conclude the chapter by applying new initial conditions to this example.

For the initial conditions provided in Fig. 4.6, we obtained time-domain responses

for the two degrees of freedom that were linear combinations of vibration in the two

natural frequencies. Could we select initial conditions that would yield vibration in

only one natural frequency? The answer is yes. If we choose initial displacements

(and zero initial velocities) that match one of the eigenvectors (i.e., the ratios of the

magnitude of vibrations between the individual local coordinates), then we will

obtain vibration only in the natural frequency that corresponds to the selected

eigenvector.

Let’s use local coordinate initial displacements of x1ð0Þ ¼ �1:686 mm and

x2ð0Þ ¼ �2 mm. Note that these initial displacements match the ratio provided

by the first eigenvector. The initial displacements in modal coordinates are:

q01
q02

� �
¼ 0:696 0:413

�0:696 0:587

� � �1:686
�2

� �
¼ �2

0

� �
mm,

and the initial velocities are zero.

The modal coordinate, time-domain solutions in the form qðtÞ ¼ q0 cos ontð Þ þ
_q0
on

sin ontð Þ are:

q1ðtÞ ¼ �2 cos 2; 506tð Þ mm

and

q2ðtÞ ¼ 0:

Transforming back into local coordinates using
x1
x2

� �
¼ 0:843 �0:593

1 1

� �
q1
q2

� �
gives:

x1ðtÞ ¼ �1:686 cos 2; 506tð Þ mm

and

x2ðtÞ ¼ �2 cos 2; 506tð Þ mm:
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As expected, the time-domain solutions in local coordinates include vibration in

only the first natural frequency and the ratio of displacement magnitudes between

coordinates x1 and x2 matches the first eigenvector.

Chapter Summary

• The eigensolution gives the eigenvalues, which identify the system’s natural

frequencies, and the eigenvectors, or mode shapes, which describe the relative

motion of the individual degrees of freedom.

• The number of eigenvalue/eigenvector pairs is equal to the number of degrees of

freedom in the system model.

• The mode shapes are typically normalized to one of the degrees of freedom for

the system model since they only provide the ratio of vibration magnitude

between coordinates.

• The roots of the characteristic equation are the eigenvalues. The characteristic

equation is determined from the equations of motion.

• The eigenvalues are used to determine the eigenvectors. The eigenvalues, and

corresponding eigenvectors, are ordered in ascending natural frequency values.

• In modal analysis, the local (model) coordinates are transformed into modal

coordinates. The equations of motion are uncoupled in modal coordinates and,

therefore, they can each be treated as a single degree of freedom system.

• The modal matrix is used to transform between local and modal coordinates. It is

also used to diagonalize the mass, stiffness, and damping matrices. Its columns

are the system’s eigenvectors (ordered from left to right in the matrix).

• Modal analysis requires proportional damping. Mathematically, proportional

damping exists if the damping matrix can be written as a linear combination of

the mass and stiffness matrices. Physically, proportional damping means that the

individual modes reach their maximum values at the same time.

• The undamped natural frequencies are the same in both local and modal

coordinates.

• The selection of initial conditions determines whether the system’s time-domain

free vibration responses will oscillate in the first natural frequency, second

natural frequency, or a linear combination of the two. If the initial displacements

(with zero initial velocities) match the ratio provided by one of the eigenvectors,

then the system will vibrate only in the natural frequency that corresponds to that

eigenvector.
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Exercises

1. Given the eigenvalues and eigenvectors for the two degree of freedom system

shown in Fig. P4.1, determine the modal matrices mq (kg), cq (N-s/m), and

kq (N/m).

s1
2 ¼ �1� 106rad=s2

s2
2 ¼ �7� 106rad=s2

c1 ¼ 0:5
1

� �
c2 ¼ �2:5

1

� �

2. Given the two degree of freedom system in Fig. P4.2, complete the following.

(a) Write the equations of motion in matrix form.

(b) Write the system characteristic equation using Laplace notation. Your

solution should be a polynomial that is quadratic in s2 with appropriate

numerical coefficients.

(c) Calculate the natural frequencies (in Hz).

(d) Determine the two mode shapes (normalize to coordinate x1).

m1=2 kg 

m2=2.5 

k1=7×106

N/m

k2=5×106

x1

x2

c1=140
N-s/m

c2=100

Fig. P4.1 Two degree of

freedom spring-mass-damper

system
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3. Given the two degree of freedom system shown in Fig. P4.3, complete the

following.

(a) Write the equations of motion in matrix form.

(b) Write the system characteristic equation using Laplace notation. Your

solution should be a polynomial that is quadratic in s2 with appropriate

numerical coefficients.

(c) Determine the natural frequencies (in rad/s).

(d) Determine the mode shapes (normalize to coordinate x2).

k1=6×105N/m

k2=1×105

m1=2 kg 

m2=3

x1

x2

Fig. P4.3 Two degree of

freedom spring-mass system

k1=1×105N/m

k2=6×105

m1=3 kg 

m2=2

x1

x2

Fig. P4.2 Two degree of

freedom spring-mass system
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4. A two degree of freedom spring-mass system is shown in Fig. P4.4. For harmonic

free vibration, complete the following if k ¼ 5 � 106 N/m and m ¼ 2 kg.

(a) Draw the free body diagram showing the forces on the two masses during

vibration.

(b) Write the two equations of motion in matrix form. First show the equations

symbolically and then substitute the numerical values for m and k.
(c) Write the characteristic equation for this system. First show the equation

symbolically and then substitute the numerical values for m and k.
(d) Determine the numerical roots of the characteristic equation (which is

quadratic in s2). What do these two roots represent?

(e) Determine the two mode shapes for this system. Normalize the mode

shapes to coordinate x1.

5. A two degree of freedom spring-mass system is displayed in Fig. P4.5. For

harmonic free vibration, complete the following if k1 ¼ 2 � 106 N/m,

m1 ¼ 0.8 kg, k2 ¼ 1 � 106 N/m, and m2 ¼ 1.4 kg. The initial displacements

for the system’s free vibration are x1(0) ¼ 2 mm and x2(0) ¼ 1 mm and

the initial velocities are _x1ð0Þ ¼ 0 mm/s and _x2ð0Þ ¼ 5 mm/s.

(a) Calculate the two natural frequencies and mode shapes. Normalize the

mode shapes (eigenvectors) to coordinate x2.
(b) Define the modal matrix and determine the modal mass and stiffness

matrices.

(c) Write the uncoupled single degree of freedom time responses for the modal

coordinates q1 and q2. Use the following form: q1;2ðtÞ ¼ A1;2 cos on1;2 t
� �þ

B1;2 sin on1;2 t
� �

with units of mm.

m 

k 

x1

m 

k 

x2

Fig. P4.4 Two degree of

freedom spring-mass system
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(d) Write the time responses for the local coordinates x1 and x2 (in mm).

(e) Plot the time responses for x1 and x2 (in mm). Define the time vector as:

t ¼ 0:0.0001:0.2; (in seconds).

6. For the same system as described in problem 5, complete the following.

(a) The initial displacements for the system’s free vibration are x1(0) ¼ 0.378

mm and x2(0) ¼ 1 mm and the initial velocities are _x1ð0Þ ¼ 0 mm/s and

_x2ð0Þ ¼ 0 mm/s. Plot the time responses for x1 and x2 (in mm). Define the

time vector as: t ¼ 0:0.0001:0.2; (in seconds). What is the vibrating

frequency for both x1ðtÞ and x2ðtÞ? What is special about these initial

conditions to give this result?

(b) The initial displacements for the system’s free vibration are x1(0) ¼
�4.628 mm and x2(0) ¼ 1 mm and the initial velocities are _x1ð0Þ ¼ 0 mm/s

and _x2ð0Þ ¼ 0 mm/s. Plot the time responses for x1 and x2 (in mm). Define the

time vector as: t ¼ 0:0.0001:0.2; (in seconds). What is the vibrating

frequency for both x1ðtÞ and x2ðtÞ? What is special about these initial

conditions to give this result?

7. A two degree of freedom spring-mass-damper system is shown in Fig. P4.7. For

harmonic free vibration, complete the following if k1 ¼ 2 � 105 N/m,

c1 ¼ 60 N-s/m, m1 ¼ 2.5 kg, k2 ¼ 5.5 � 104 N/m, c2 ¼ 16.5 N-s/m, and

m2 ¼ 1.2 kg.

(a) Verify that proportional damping exists.

(b) Define the modal matrix and determine the modal mass, stiffness, and

damping matrices. Normalize the mode shapes to coordinate x2.

m1

k1

x1

x2

k2

m2

Fig. P4.5 Two degree of

freedom spring-mass system
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8. Given the two degree of freedom system in Fig. P4.8, complete the following.

(a) Write the equations of motion in matrix form.

(b) Verify that proportional damping exists.

(c) Determine the roots of the characteristic equation. What do these roots

represent?

(d) Determine the two mode shapes (normalize to coordinate x1).

k1=5.5×106N/m c1=1375N-s/m

c2=100k1=4 × 105

m2=1

m1=12 kg

x1

x2

Fig. P4.8 Two degree of

freedom spring-mass system

m1

k1

x1

x2

k2

m2

c1

c2

Fig. P4.7 Two degree of

freedom spring-mass-damper

system under free vibration
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9. Determine the mass, damping, and stiffness matrices in local coordinates for

the model shown in Fig. P4.9.

10. Given the mass, damping, and stiffness matrices for the model shown in

Fig. P4.9 determined from problem 9, can proportional damping exist for this

system? Justify your answer.
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m 

k 

x1

x2

x3

c 

3m

k 

2m

2c

2k c 

3c

Fig. P4.9 Three degree of

freedom spring-mass-damper

model
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Chapter 5

Two Degree of Freedom Forced Vibration

Our achievements of today are but the sum total of our thoughts
of yesterday.

– Blaise Pascal

5.1 Equations of Motion

Let’s extend the two degree of freedom free vibration analysis from Chap. 4 to

include externally applied forces so that we can analyze two degree of freedom

forced vibration. The general case is that a separate harmonic force is applied at

each coordinate; see Fig. 5.1. However, we are considering only linear systems, so

we can apply superposition. This means that we can determine the system response

due to each force separately and then sum the results to find the combined effect.

Using the free body diagrams included in Fig. 5.1, the equations of motion

expressed in matrix form are:

m1 0

0 m2

� �
€x1
€x2

� �
þ c1 þ c2 �c2

�c2 c2

� �
_x1
_x2

� �
þ k1 þ k2 �k2

�k2 k2

� �
x1
x2

� �

¼ F1e
io1t

F2e
io2t

� �
; (5.1)

where the subscripts on the forcing frequencies indicate that they are not necessarily

equal. Because the springs and dampers appear together in the Fig. 5.1 model, the

damping and stiffness matrices have the same format in Eq. 5.1. This is not always

the case, but the mass, damping, and stiffness matrices will be symmetric in all

instances, as long as the coordinates are measured with respect to ground.

T.L. Schmitz and K.S. Smith, Mechanical Vibrations: Modeling and Measurement,
DOI 10.1007/978-1-4614-0460-6_5, # Springer Science+Business Media, LLC 2012
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IN A NUTSHELL If the coordinates are measured with respect to

ground and the stiffness matrix (for example) is not symmetric, then

we have made a perpetual motion machine. Essentially, the energy

required to achieve a specified displacement configuration through

one loading path (say moving coordinate 1 and then moving

coordinate 2) would not be the same as the energy recovered by returning the

coordinates to their original position through a different loading path. By loading

and unloading through two different paths, energy could be extracted from the

system indefinitely. Simply put, when the coordinates are measured with respect to

ground, the mass, stiffness, and damping matrices must be symmetric.

For now let’s take advantage of superposition and consider only f2ðtÞ ¼ F2e
iot

(the frequency subscript is removed because there is just one force). Similar to the

single degree of freedom forced vibration analysis in Chap. 3, we can assume a

harmonic form for the solution which mimics the forcing function xðtÞ ¼ Xeiot.
This gives _xðtÞ ¼ ioXeiot and €xðtÞ ¼ ioð Þ2Xeiot ¼ �o2Xeiot. Substitution in

Eq. 5.1 yields:

�o2 m1 0

0 m2

� �
þ io

c1 þ c2 �c2
�c2 c2

� �
þ k1 þ k2 �k2

�k2 k2

� �� �
X1

X2

� �
eiot

¼ 0

F2e
iot

� �
: (5.2)

m1
x1

k1 m1

m1x1 c1x1 k1x1

k2 (x2 − x1)

k2 (x2 − x1)

m2

m2x2

c1 

m2 x2

k2 c2

f2(t)

f1(t) = F1e
iw1t

f2(t) = F2e
iw2t

c2 (x2 − x1)

c2 (x2 − x1)

f1(t)

Fig. 5.1 Two degree of freedom chain-type, spring–mass–damper system with harmonic forces

f1ðtÞ and f2ðtÞ applied at coordinates x1 and x2, respectively
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In the generic case, we can express Eq. 5.2 as:

�o2 m½ � þ io c½ � þ k½ �� �
~X
� 	

eiot ¼ ~F
� 	

eiot: (5.3)

We will apply two methods to solve the system of coupled differential equations

represented by Eq. 5.3. In both cases, we will determine the system frequency

response functions (FRFs). These FRFs identify the frequency-dependent, steady-

state vibration behavior and, because this is our desired result, we will neglect the

transients which rapidly decay in general. The first solution method is referred to as

complex matrix inversion. While this approach is more computationally expensive, it

does not require proportional damping. The second method is modal analysis, which
we introduced in Chap. 4. This method is applicable to systems with any number of

degrees of freedom, but proportional damping must be satisfied (or assumed).

5.2 Complex Matrix Inversion

To implement this approach, it is helpful to rewrite Eq. 5.3 in a more compact form;

see Eq. 5.4. In this form, the sum of the mass, damping, and stiffness matrices, with

the appropriate frequency multipliers on the mass and damping matrices, is

represented by the matrix A. To determine the system FRFs, we simply need to

invert the complex matrix A. This is demonstrated in Eq. 5.5.

�o2 m½ � þ io c½ � þ k½ �� �
~X
� 	

eiot ¼ A½ � ~X
� 	

eiot ¼ ~F
� 	

eiot (5.4)

~X
� 	 ¼ A½ ��1 ~F

� 	
(5.5)

For the two degree of freedom system displayed in Fig. 5.1, A is a 2 � 2 matrix

and can be expressed as shown in Eq. 5.6. This matrix is frequency dependent. One

way to visualize A is to consider it as a book where each page provides the four aij
values at a particular frequency. The beginning of the book gives the low frequency

values and the end gives the high frequency values.

A½ � ¼ a11 a12
a21 a22

� �
¼ �o2m1 þ io c1 þ c2ð Þ þ k1 þ k2ð Þ �ioc2 � k2

�ioc2 � k2 �o2m2 þ ioc2 þ k2

� �

(5.6)

As we saw in Sect. 2.4.5, we determine the inverse of the A matrix by switching

the on-diagonals, changing the sign of the off-diagonals, and dividing each term

by the determinant of A; see Eq. 5.7. In this case, however, we have to repeat

the inversion for each frequency value within our range (or bandwidth) of interest.
For example, wemight be interested in a system’s response between 0 and 5,000 Hz.

With a frequency resolution of 1 Hz, we would need to invert A 5,001 times.
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A½ ��1 ¼ 1

Aj j
a22 �a12
�a21 a11

� �
¼ 1

a11a22 � a12a21ð Þ
a22 �a12
�a21 a11

� �
¼ a11 a12

a21 a22

� �

(5.7)

The four entries in the inverted A matrix are provided in Eqs. 5.8–5.11.

a11 ¼ �o2m2 þ ioc2 þ k2
Aj j (5.8)

a12 ¼ ioc2 þ k2
Aj j (5.9)

a21 ¼ ioc2 þ k2
Aj j (5.10)

a22 ¼ �o2m1 þ io c1 þ c2ð Þ þ k1 þ k2ð Þ
Aj j (5.11)

Let’s assume that the external force is applied to coordinates x1 only in Fig. 5.1.

We can therefore write:

X1

X2

� �
¼ a11 a12

a21 a22

� �
F1

0

� �
: (5.12)

Using Eq. 5.12, we can solve for X1.

X1 ¼ a11F1 (5.13)

From Eq. 5.13, we see that a11 ¼ X1 F1= gives X1 for a force F1. This is called a

direct FRF because the response is measured at the same location where the force is

applied (the aij subscripts match). From the bottom row in Eq. 5.12, we have

a21 ¼ X2 F1= , which relates X2 and F1. This is a cross FRF because the response

is measured at a different location than where the force is applied (the aij subscripts

do not match). If the force is applied to coordinate x2 only in Fig. 5.1, then
X1

X2

� �
¼

a11 a12
a21 a22

� �
0

F2

� �
and we have:

X2 ¼ a22F2: (5.14)

From Eq. 5.14, a22 ¼ X2 F2= is a direct FRF that relates X2 and F2. Also, a12 ¼
X1 F2= is a cross FRF that relates X1 and F2. The FRFs X2 F2= and X2 F1= are

depicted in Fig. 5.2. All together, our two degree of freedom system has four direct

and cross FRFs (22). A three degree of freedom system has nine (32).
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From Eqs. 5.9 and 5.10, we see that a12 ¼ a21 because A½ ��1
is symmetric. This

attribute is referred to as reciprocity and can be observed by comparing cross FRFs

measured on actual systems. Let’s consider the cantilever, or fixed-free, beam

shown in Fig. 5.3 for two cases. First, a harmonic force is applied at coordinate 1

(the free end) and the response is measured at coordinate 2 somewhere along the

beam, let’s say the midpoint. Second, the same force is applied at coordinate 2, but

the response is measured at coordinate 1. In the first case, if we measured the

response and converted both the force and response into the frequency domain

(using the Fourier transform), we would obtain the cross FRF X2 F1= . In the second

case, we would determine the cross FRF X1 F2= from our measurements. Due to

reciprocity, these two cross FRFs are equal.

IN A NUTSHELL Reciprocity will be a handy tool later when we

explore the physical measurement of FRFs. Sometimes it is

convenient to switch the excitation and measurement locations; we

are free to do so because of this property.

m1 x1

x2

k1 c1

m2

k2 c2

m1
x1

k1 c1

m2 x2

k2 c2

F1

X2 X2Displacement
transducer 

F2

Cross FRF 
F1

X2 Direct FRF 
F2

X2

Fig. 5.2 The direct and cross FRFs for coordinate x2 are shown
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To aid in understanding this concept, Fig. 5.3 depicts the two cases where the

forcing frequency is equal to the beam’s first (lowest) natural frequency so that it

vibrates in the corresponding mode shape (see Sect. 4.2). When the force is applied

at the free end, the magnitude of the response is largest everywhere and the

corresponding X2 is obtained. When the force is instead applied at coordinate 2,

the response is not so big, but it is largest at the free end where we measure X1.

As shown in the figure, the magnitudes X1 and X2 are equal and, therefore, the cross

FRFs are equal.

To consider a limiting case, assume that the force is applied at the free end and

the response is measured at the fixed end, now labeled as coordinate 2. Because the

boundary condition is fixed, no matter what force is applied at the free end (1),

the measured response will be zero at the fixed end (2). Therefore, the cross FRF

X2 F1= will be zero for all frequencies. If, on the other hand, the force is applied at

the fixed end and the response is measured at the free end, the cross FRF X1 F2= will

still be zero because a force at the base will not serve to excite vibration in the beam.

Reciprocity again holds.

To determine the system FRFs by complex matrix inversion, we solve Eq. 5.7 for

each frequency within the range of interest. At each frequency, we extract the

desired direct or cross FRF from the inverted matrix and then plot the results on a

frequency-by-frequency basis. An example is provided in By the Numbers 5.1.

By the Numbers 5.1

Consider the system shown in Fig. 5.1 with m1 ¼ 2 kg, c1 ¼ 150 N-s/m,

k1 ¼ 1� 106 N/m, m2 ¼ 4 kg, c2 ¼ 50 N-s/m, and k2 ¼ 2� 106 N/m. Note that

proportional damping is not satisfied for this system ( c½ � 6¼ a m½ � þ b k½ � for any

combination of real a and b values). Substitution in Eq. 5.6 gives:

A½ � ¼ �o2 � 2þ io � 200þ 3� 106 �io � 50� 2� 106

�io � 50� 2� 106 �o2 � 4þ io � 50þ 2� 106

� �
:

1 12 2 

X2 X1F2F1

Fig. 5.3 Reciprocity demonstration for cantilever beam cross FRF measurements
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Computing the inverse of A for a frequency range between 0 and 2000 rad/s

gives the four system FRFs. The direct FRF X1 F1= is shown in Fig. 5.4. Vibration

modes are observed at 366 and 1,365.5 rad/s for the two degree of freedom system;

these are the natural frequencies. The cross FRF X1 F2= is displayed in Fig. 5.5.

We see that the higher frequency mode is inverted; its motion is out of phase with

the lower frequency mode. We also see that its magnitude is quite small relative to
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Fig. 5.4 By the Numbers 5.1 – Direct FRF X1 F1= for the example system
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Fig. 5.5 By the Numbers 5.1 – Cross FRF X1 F2= for the example system
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the lower frequency mode. To better view modes with very different magnitudes in

a single plot, a semi-logarithmic representation is often used. In this case, the

logarithmic vertical (magnitude) axis is plotted against the linear horizontal (frequ-

ency) axis. Figure 5.6 was produced using the MATLAB® command semilogy. To
complete the story, the corresponding phase is provided in Fig. 5.7. Figures 5.4–5.7

were generated using MATLAB® MOJO 5.1.
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Fig. 5.6 By the Numbers 5.1 – Semi-logarithmic plot of the cross FRF X1 F2=
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Fig. 5.7 By the Numbers 5.1 – Phase plot of the cross FRF X1 F2=
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MATLAB
®

 MOJO 5.1 
% matlab_mojo_5_1.m 

clc 
clear all 
close all 

% Define variables 
omega = 0:0.5:2000;         % frequency, rad/s 

% Define function 
for cnt = 1:length(omega) 
    w = omega(cnt); 
    a11 = -w^2*2 + i*w*200 + 3e6; 
    a12 = -i*w*50 - 2e6; 
    a21 = a12; 
    a22 = -w^2*4 + i*w*50 + 2e6; 
    A = [a11 a12; a21 a22]; 
    inverted_A = inv(A); 
    X1_F1(cnt) = inverted_A(1,1); 
    X1_F2(cnt) = inverted_A(1,2); 
    X2_F1(cnt) = inverted_A(2,1); 
    X2_F2(cnt) = inverted_A(2,2); 
end 

figure(1) 
subplot(211) 
plot(omega, real(X1_F1), 'k-') 
set(gca,'FontSize', 14) 
ylabel('Re(X_1/F_1) (m/N)') 
axis([0 2000 -1.5e-5 1.5e-5]) 
subplot(212) 
plot(omega, imag(X1_F1), 'k-') 
set(gca,'FontSize', 14) 
xlabel('\omega (rad/s)') 
ylabel('Im(X_1/F_1) (m/N)') 
axis([0 2000 -2.6e-5 6e-6]) 

figure(2) 
subplot(211) 
plot(omega, real(X1_F2), 'k-') 
set(gca,'FontSize', 14) 
ylabel('Re(X_1/F_2) (m/N)') 
axis([0 2000 -1.5e-5 1.5e-5]) 
subplot(212) 
plot(omega, imag(X1_F2), 'k-') 
set(gca,'FontSize', 14) 
xlabel('\omega (rad/s)') 
ylabel('Im(X_1/F_2) (m/N)') 
axis([0 2000 -2.6e-5 6e-6]) 

figure(3) 
semilogy(omega, abs(X1_F2), 'k-') 
set(gca,'FontSize', 14) 
xlabel('\omega (rad/s)') 
ylabel('Mag(X_1/F_2) (m/N)') 

figure(4) 
plot(omega, unwrap(angle(X1_F2))*180/pi, 'k-') 
set(gca,'FontSize', 14) 
xlabel('\omega (rad/s)') 
ylabel('\phi(X_1/F_2) (deg)') 
ylim([-360 0]) 
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5.3 Modal Analysis

Let’s next solve the two degree of freedom forced vibration problem using the

modal analysis approach. Recall that this method requires that proportional

damping exists (or can be assumed). The analysis steps are similar to those we

discussed for two degree of freedom free vibration in Sect. 4.4. For the chain-type,

spring–mass–damper system shown in Fig. 5.8, we will consider only f2ðtÞ for now.
We could also determine the response to f1ðtÞ and add the results using linear

superposition. The system equations of motion in matrix form are:

m½ � ~€x
n o

þ c½ � ~_x
n o

þ k½ � ~xf g ¼ ~F
� 	

eiot; (5.15)

where m½ � ¼ m1 0

0 m2

� �
, c½ � ¼ c1þ c2 �c2

�c2 c2

� �
, k½ � ¼ k1þ k2 �k2

�k2 k2

� �
, and

~F
� 	¼ 0

F2

� �
. To determine the forced response, we complete the following steps.

IN A NUTSHELL Because the modal analysis technique is so

powerful, we often assume that the damping is proportional even

when it is not. In other situations, when we do not know the nature of

the damping because a physical incarnation of our design does not

exist, we often assume proportional damping during the analysis.

m1 x1

k1 

m1

m2 

c1 

m2 x2

k2 c2

m2x2 f2(t)
f2(t) = F2e

iw2t

m1x1 c1x1 k1x1

k2 (x2 − x1)c2 (x2 − x1)

Fig. 5.8 Two degree of freedom system with f2ðtÞ applied at x2
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1. Verify proportional damping using c½ � ¼ a m½ � þ b k½ �:
2. Ignore damping and the force to find the eigenvalues and eigenvectors.

m½ �s2 þ k½ �� � X1

X2

� �
¼ 0

0

� �
; where

x1
x2

� �
¼ X1

X2

� �
est (5.16)

Obtain the eigenvalues from the characteristic equation:

m½ �s2 þ k½ �

 

 ¼ 0: (5.17)

For the two degree of freedom system, the two roots, s21 and s22, are the

eigenvalues. These give the natural frequencies s21 ¼ �o2
n1 and s22 ¼ �o2

n2,

where on1<on2. Use either equation of motion and normalize to X2 (because

the force is applied at this location). The eigenvectors are:

c1 ¼
X1

X2

� �
1

1

( )
¼ p1

1

� �
and c2 ¼

X1

X2

� �
2

1

( )
¼ p2

1

� �
; (5.18)

where c1 is evaluated using s2 ¼ s21 and c2 is obtained using s2 ¼ s22.
3. Construct the modal matrix using the eigenvectors.

P½ � ¼ c1 c2½ � (5.19)

Use the modal matrix to transform into modal coordinates and uncouple the

equations of motion.

mq

� � ¼ mq1 0

0 mq2

� �
¼ P½ �T m½ � P½ � (5.20)

cq
� � ¼ cq1 0

0 cq2

� �
¼ P½ �T c½ � P½ � (5.21)

kq
� � ¼ kq1 0

0 kq2

� �
¼ P½ �T k½ � P½ � (5.22)

Transform the force vector from local to modal coordinates.

R
*
n o

¼ R1

R2

� �
¼ P½ �T ~F

� � ¼ p1 p2
1 1

� �
0

F2

� �
¼ F2

F2

� �
(5.23)

In modal coordinates, the same force is applied to both single degree of freedom

systems. Recall that modal coordinates may not make physical sense to us.
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4. Write the FRFs for the two single degree of freedom systems in modal

coordinates, Q1 and Q2. Note that Q1 and Q2 are the frequency-domain

representations of the time-domain modal coordinates, q1 and q2, that we

introduced in Sect. 4.4. For the first natural frequency, the FRF is:

Q1

R1

¼ 1

kq1

1� r21
 �� i 2zq1r1

 �
1� r21
 �2 þ 2zq1r1

 �2
 !

; (5.24)

where r1 ¼ o on1= and zq1 ¼ cq1 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kq1mq1

p�
. Plot the real and imaginary parts

as shown in Fig. 5.9 and the magnitude and phase as displayed in Fig. 5.10.

For the second natural frequency, the FRF is:

Q2

R2

¼ 1

kq2

1� r22
 �� i 2zq2r2

 �
1� r22
 �2 þ 2zq2r2

 �2
 !

; (5.25)

where r2 ¼ o on2= and zq2 ¼ cq2 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kq2mq2

p�
. The plots are similar to Figs. 5.9

and 5.10.

5. Transform back to local coordinates using:

~X
� 	 ¼ P½ � ~Q

n o
¼ p1 p2

1 1

� �
Q1

Q2

� �
: (5.26)

Re
R1

Q1

Im
R1

Q1

1

kq1

2kq1zq1

2kq1zq1

1

1−zq1

1

wn1

1+zq1w
n1

wn1

w

w
wn1

Fig. 5.9 Real and imaginary

parts of Q1 R1= FRF (modal

coordinates)
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Using Eq. 5.26, we solve for X1 and X2.

X1 ¼ p1Q1 þ p2Q2 and X2 ¼ Q1 þ Q2: (5.27)

The direct FRF is:

X2

F2

¼ Q1 þ Q2

F2

¼ Q1

R1

þ Q2

R2

: (5.28)

Because R1 ¼ R2 ¼ F2. The direct FRF at the location where the mode shapes

were normalized is the sum of the modal contributions. See Fig. 5.11. The cross

FRF is:

X1

F2

¼ p1Q1 þ p2Q2

F2

¼ p1
Q1

R1

þ p2
Q2

R2

: (5.29)

The cross FRF is the sum of the modal contributions scaled by the eigenvectors.
See Fig. 5.12.

The five fundamental steps for modal analysis are summarized in Table 5.1.

2kq1zq1
R1

Q1

R1

Q1φ

1

kq1

1

–90 deg

–180 deg

w

w

wn1

wn1

Fig. 5.10 Magnitude and

phase of Q1 R1= FRF (modal

coordinates)

5.3 Modal Analysis 179



www.manaraa.com

By the Numbers 5.2

Let’s complete an example to demonstrate the steps we have just discussed. For the

two degree of freedom model in Fig. 5.8, the parameters are k1 ¼ 4� 105 N/m,

Im
F2

X2

2kq2zq2

1

2kq1zq1

1

Re
F2

X2

w

w
wn1 wn2

Fig. 5.11 Direct FRF X2 F2=
(local coordinates)

Im
F2

X1

2kq2zq2

Re
F2

X1

ω

ω

p2

2kq1zq1

p1

wn1

wn2

Fig. 5.12 Cross FRF X1 F2=
(local coordinates)
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c1 ¼ 80 N-s/m, m1 ¼ 2 kg, k2 ¼ 6� 105 N/m, c2 ¼ 120 N-s/m, m2 ¼ 1 kg, and

f2ðtÞ ¼ 100eiot N. The mass, damping, and stiffness matrices are:

m½ � ¼ m1 0

0 m2

� �
¼ 2 0

0 1

� �
kg;

c½ � ¼ c1 þ c2 �c2
�c2 c2

� �
¼ 200 �120

�120 120

� �
N-s=m ;

and

k½ � ¼ k1 þ k2 �k2
�k2 k2

� �
¼ 1� 106 �6� 105

�6� 105 6� 105

� �
N=m:

1. Verify proportional damping. The equality is true when a ¼ 0 and b ¼ 1 5000= ,

so proportional damping holds.

200 �120

�120 120

� �
¼ a

2 0

0 1

� �
þ b 1� 106 �6� 105

�6� 105 6� 105

� �

2. Ignore damping and the force to find the eigenvalues and eigenvectors.

2 0

0 1

� �
s2 þ 1� 106 �6� 105

�6� 105 6� 105

� �� �
X1

X2

� �
¼ 0

0

� �

Obtain the eigenvalues from the characteristic equation:

2s2 þ 1� 106 �6� 105

�6� 105 1s2 þ 6� 105










 ¼ 0;

or

2s2 þ 1� 106
 �

1s2 þ 6� 105
 �� �6� 105

 �2
¼ 2s4 þ 2:2� 106s2 þ 2:4� 1011 ¼ 0:

Table 5.1 Modal analysis steps Step Action

1 Verify proportional damping.

2 Ignore damping and external force to find the

eigenvalues and eigenvectors.

3 Construct the modal matrix using the eigenvectors.

4 Write the FRFs for the single degree of freedom

systems in modal coordinates.

5 Transform back to local coordinates.
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The roots are s21 ¼ �122; 799:81 ¼ �o2
n1 and s22 ¼ �977; 200:19 ¼ �o2

n2. The

natural frequencies are on1 ¼ 350:43 rad/s and on2 ¼ 988:53 rad/s. Alternately,
fn1 ¼ 55:77 Hz and fn2 ¼ 157:33 Hz. The top equation of motion from the matrix

format is 2s2 þ 1� 106
 �

X1 � 6� 105X2 ¼ 0. In order to normalize the

eigenvectors to x2 (the force location), the required ratio is:

X1

X2

¼ 6� 105

2s2 þ 1� 106
:

Substituting s21 ¼ �122; 799:81 gives the first eigenvector.

c1 ¼
6�105

2 �122;799:81ð Þþ1�106

� �
1

( )
¼ 0:795

1

� �

Substituting s22 ¼ �977; 200:19 gives the second eigenvector.

c2 ¼
6�105

2 �977;200:19ð Þþ1�106

� �
1

( )
¼ �0:629

1

� �

3. Construct the modal matrix using the eigenvectors.

P½ � ¼ 0:795 �0:629
1 1

� �

Use the modal matrix to transform into modal coordinates and uncouple the

equations of motion.

mq

� � ¼ P½ �T m½ � P½ � ¼ 2:264 0

0 1:791

� �
kg

cq
� � ¼ P½ �T c½ � P½ � ¼ 55:605 0

0 350:088

� �
N-s=m

kq
� � ¼ P½ �T k½ � P½ � ¼ 2:780� 105 0

0 1:750� 106

� �
N=m

Transform the force vector from local to modal coordinates.

R
*
n o

¼ R1

R2

� �
¼ P½ �T ~F

� � ¼ 0:795 �0:629
1 1

� �
0

100

� �
¼ 100

100

� �
N
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4. Write the FRFs for the two single degree of freedom systems in modal

coordinates. For the first natural frequency, the FRF is:

Q1

R1

¼ 1

2:780� 105
1� r21
 �� i 2 0:0358ð Þr1ð Þ
1� r21
 �2 þ 2 0:0358ð Þr1ð Þ2

 !
;

where r1 ¼ o 350:43= and the damping ratio is zq1 ¼ 55:605

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:780�105 2:264ð Þ

p ¼ 0:0358.

For the second natural frequency, the FRF is:

Q2

R2

¼ 1

1:750� 106
1� r22
 �� i 2 0:0989ð Þr2ð Þ
1� r22
 �2 þ 2 0:0989ð Þr2ð Þ2

 !
;

where r2 ¼ o 988:53= and zq2 ¼ 350:088

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:750�106 1:791ð Þ

p ¼ 0:0989:

5. Transform back to local coordinates. The direct FRF, X2

F2
¼ Q1

R1
þ Q2

R2
, is plotted in

Fig. 5.13. The cross FRF, X1

F2
¼ p1

Q1

R1
þ p2

Q2

R2
, is plotted in Fig. 5.14.

In Figs. 5.13 and 5.14, the value of the real part at zero frequency (o ¼ 0)

represents the DC compliance (i.e., the inverse of stiffness). For the direct FRF in

Fig. 5.13, the value is:

Re
X2

F2

� �




o¼0

¼ 1

kq1
þ 1

kq2
¼ 4:169� 10�6 m=N: (5.30)
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Fig. 5.13 By the Numbers 5.2 – Direct FRF X2 F2= (local coordinates)

5.3 Modal Analysis 183



www.manaraa.com

This indicates that the modal stiffness for each mode is added in series to give the

local stiffness for the model. For the cross FRF in Fig. 5.14, the DC compliance is:

Re
X1

F2

� �




o¼0

¼ p1
kq1

þ p2
kq2

¼ 2:500� 10�6 m=N: (5.31)

Again, the modal stiffness values are added in series, but each is scaled by

the appropriate eigenvector. Given the force magnitude F2, we could use Eqs. 5.30

and 5.31 to determine the real-valued deflections, X1 and X2, due to the DC

(non-oscillating) force. At any nonzero forcing frequency, the responses are complex-

valued and describe the steady-state forced vibration; see Figs. 5.13 and 5.14.

5.4 Dynamic Absorber

Let’s now investigate a special application of complex matrix inversion. Consider

the undamped single degree of freedom system subject to forced vibration shown

in Fig. 5.15. Let’s assume that the magnitude X1 due to the harmonic force f1ðtÞ ¼
F1e

iof t is too large and causes, for example, mechanical failure, passenger discom-

fort, manufacturing errors, etc. In order to eliminate this problem, we would like X1

to ideally be zero at the forcing frequency of. In other words, the magnitude
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Fig. 5.14 By the Numbers 5.2 – Cross FRF X1 F2= (local coordinates)
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of motion at coordinate x1 is zero when the system is forced at the frequency of.

This result is expressed in Eq. 5.32.

X1

F1

¼ 0 at o ¼ of (5.32)

Let’s add a second degree of freedom to the system and see what happens.

See Fig. 5.16, where the system model is now:

�o2 m1 0

0 m2

� �
þ k1 þ k2 �k2

�k2 k2

� �� �
X1

X2

� �
eiof t ¼ F1

0

� �
eiof t: (5.33)

Equation 5.33 can be more compactly expressed as A½ � ~X
� 	 ¼ ~F

� 	
. As we saw

in Sect. 5.2, we can use complex matrix inversion to determine the system FRFs.

m1 x1

k1 

f1(t) = F1e
iwf t

Fig. 5.15 Single degree of

freedom, undamped system

with the harmonic force

f1ðtÞ ¼ F1e
iof t which causes

excessive vibration at

coordinate x1

f1(t) = F1e
iwf t

m1
x1

k1

m1

k2

x2
Dynamic
absorber  

Fig. 5.16 The addition of the

dynamic absorber gives a

new two degree of freedom

system
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Similar to Eq. 5.8, the direct FRF at coordinate x1 for the new two degree of

freedom system is:

a11 ¼ X1

F1

¼ �o2
f m2 þ k2

�o2
f m1 þ k1 þ k2

 � �o2
f m2 þ k2

 �� �k2ð Þ2 : (5.34)

We want this FRF to be zero, so it is required that � o2
f m2 þ k2 ¼ 0 or:

of ¼
ffiffiffiffiffiffi
k2
m2

r
: (5.35)

When the k2 and m2 values for the added spring and mass, together known as a

dynamic absorber, are selected by applying this design rule, the response at x1 is
zero, even though f1ðtÞ ¼ F1e

iof t remains. Let’s sketch the magnitude plots for

the original and new systems. Figure 5.17 shows the original single degree of

freedom FRF magnitude with m1 ¼ 1 kg and k1 ¼ 1� 106 N/m. We see that the

response is infinite at resonance in the absence of damping. For this example,

we will assume that the forcing frequency is equal to the natural frequency,

of ¼
ffiffiffiffi
k1
m1

q
¼ 1;000 rad/s. Clearly, the response would be too large in this case! In

Fig. 5.18, the new direct FRF X1 F1= is shown, where m2 was selected to be 0.1 kg

and the corresponding spring stiffness was k2 ¼ o2
f � m2 ¼ 1� 105 N/m according

to Eq. 5.35. The new two degree of freedom system naturally has two modes

(and natural frequencies), but the response is zero at o ¼ of .
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Fig. 5.17 Direct FRF for the original single degree of freedom system
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We have now eliminated the vibration at x1 due to the force f1 with a frequency

of of. What about the motion of the added mass? To answer this question, we need

the cross FRF X2 F1= . Similar to Eq. 5.10 we have:

a21 ¼ X2

F1

¼ k2

�o2
f m1 þ k1 þ k2

 � �o2
f m2 þ k2

 �� �k2ð Þ2 : (5.36)

Expanding the denominator gives:

a21 ¼ X2

F1

¼ k2
m1m2o4

f � k2m1o2
f � k1 þ k2ð Þm2o2

f þ k1k2 þ k22 � k22
: (5.37)

According to the dynamic absorber design rule, o2
f
¼ k2 m2= . Substituting

yields:

a21 ¼ X2

F1

¼ k2

m1m2

k22
m2

2

� k2m1

k2
m2

� k1m2

k2
m2

� k2m2

k2
m2

þ k1k2

: (5.38)

Simplifying gives:

a21 ¼ X2

F1

¼ k2
m1

m2

k22 �
m1

m2

k22 � k1k2 � k22 þ k1k2
¼ k2

�k22
¼ � 1

k2
: (5.39)
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Fig. 5.18 Direct FRF X1 F1= for the new two degree of freedom system
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Equation 5.39 can be rewritten as X2 ¼ �F1 k2= . This tells us that the motion of

x2 is 180
� out of phase with x1. The role of the added spring and mass, therefore, is

for its inertial force to counteract the external force at x1 and cause the vibration to

be zero – hence the name, dynamic absorber. It effectively absorbs the external

force’s energy at of. Equation 5.22 also shows that a stiffer dynamic absorber

spring decreases the magnitude of the x2 vibration. While we may want k2 to be

larger to keep X2 F1= smaller, we must also satisfy o2
f
¼ k2 m2= . A larger k2 means a

proportionally larger m2 and there is typically a practical limit on how much mass

can be added as the dynamic absorber.

IN A NUTSHELL The dynamic absorber is a valuable tool. If we

encounter a forced vibration that is too large, we can eliminate it by

adding a new spring and mass, which alone would have a natural

frequency that matches the forcing frequency. The added mass will

move, but the motion of the attachment point will be dramatically

reduced. Dynamic absorbers are found, for example, in automobile transmissions,

at the top of skyscrapers, on power lines, and in machine tools.

To conclude this section, we should recognize that all systems include some

level of damping. We can conveniently analyze the damped system response using

Eqs. 5.8 and 5.10. Given the base system (Fig. 5.15) description, we could tune

the dynamic absorber stiffness (assuming its mass was preselected) to minimize the

response at the forcing frequency. The design rule provided in Eq. 5.35 still

provides a reasonable starting point.

By the Numbers 5.3

Let’s again consider the Fig. 5.15 system with m1 ¼ 1 kg and k1 ¼ 1� 106 N/m,

but now add the damper c1 ¼ 100 N - s/m. This gives a single degree of freedom

damping ratio of z1 ¼ c1
2
ffiffiffiffiffiffiffi
k1m1

p ¼ 100

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�106ð1Þ

p ¼ 0:05 ¼ 5%. The FRF is shown in

Fig. 5.19, where the damped natural frequency, od, is 998.75 rad/s. We will specify

a forcing function of f1ðtÞ ¼ 100eiod t N. If the absorber mass, m2, is 0.1 kg, then an

initial guess for the absorber spring stiffness is k2 ¼ o2
d � m2 ¼ 9:975� 104 N/m.

We will assume the absorber damping coefficient is c2 ¼ 5 N-s/m. The

corresponding two degree of freedom system direct FRF X1 F1= is provided

in Fig. 5.20. Its value at the forcing frequency, od, is 4:7565� 10�7 m/N.

The vibration magnitude at x1 is therefore X1 ¼ 4:7565� 10�7 � 100 ¼ 4:7565�
10�5 m � 48 mm for the 100 N magnitude force. This is quite an improvement

over the original single degree of freedom response of X1 ¼ 1� 10�5 � 100 ¼
1� 10�3 m ¼ 1 mm. The cross FRF X2 F1= for the absorber response is shown in

Fig. 5.21. The magnitude at the forcing frequency is X2 ¼ 9:5249� 10�6 � 100 ¼
9:5249� 10�4 m � 0:952 mm.

While this result is already pretty good, perhaps we can reduce the response at x1
by adjusting k2. Figure 5.22 shows the value of X1 F1= at o ¼ of for the two degree

of freedom system as a function of the modified k2 value. We see that the minimum
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is obtained when k2 ¼ 1:0025� 105 N/m. The vibration magnitude for this opti-

mum stiffness is X1 ¼ 4:7517� 10�7 � 100 ¼ 4:7517� 10�5 m, which is again

approximately 48 mm. The code used to produce Figs. 5.19–5.22 is provided in

MATLAB® MOJO 5.2.
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Fig. 5.20 By the Numbers 5.3 – Direct FRF X1 F1= for the two degree of freedom system with the

dynamic absorber added
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Fig. 5.19 By the Numbers 5.3 – FRF for the original single degree of freedom damped system
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Fig. 5.22 By the Numbers 5.3 – Variation in X1 F1= magnitude at of for a range of k2 values near
the initial guess

x 10–5

|X
2/

F
1|

 (
m

/N
)

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

ω (rad/s)

Fig. 5.21 By the Numbers 5.3 – Cross FRF X2 F1= for the two degree of freedom system with the

dynamic absorber added
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MATLAB
® MOJO 5.2 

% matlab_mojo_5_2.m 

clc 
clear all 
close all 

% Define variables 
omega = 0:0.25:2000;    % rad/s 
m1 = 1;                 % kg 
k1 = 1e6;               % N/m 
c1 = 100;               % N-s/m 
wn1 = sqrt(k1/m1);      % rad/s 
zeta1 = 0.05; 

% Define function 
r = omega/wn1; 
mag1 = 1/k1*(1./((1-r.^2).^2 + (2*zeta1*r).^2)).^0.5; 

figure(1) 
plot(omega, mag1, 'k-') 
set(gca,'FontSize', 14) 
xlabel('\omega (rad/s)') 
ylabel('|X_1/F_1)| (m/N)') 
axis([0 2000 0 3.3e-5]) 

index = find(omega == wn1); 
mag_original = abs(mag1(index)) 

% Dynamic absorber 
m2 = 0.1; 
wf = wn1; 
k2 = wf^2*m2; 
c2 = 5; 

for cnt = 1:length(omega) 
    w = omega(cnt); 
    a11 = -w^2*m1 + i*w*(c1 + c2) + k1 + k2; 
    a12 = -i*w*c2 - k2; 
    a21 = a12; 
    a22 = -w^2*m2 + i*w*c2 + k2; 
    A = [a11 a12; a21 a22]; 
    inverted_A = inv(A); 
    X1_F1(cnt) = inverted_A(1,1); 
    X1_F2(cnt) = inverted_A(1,2); 
    X2_F1(cnt) = inverted_A(2,1); 

    X2_F2(cnt) = inverted_A(2,2); 
end 

figure(2) 
plot(omega, abs(X1_F1), 'k-') 
set(gca,'FontSize', 14) 
xlabel('\omega (rad/s)') 
ylabel('|X_1/F_1)| (m/N)') 
axis([0 2000 0 3.3e-5]) 

index = find(omega == wf); 
mag_direct = abs(X1_F1(index)) 
mag_cross = abs(X2_F1(index)) 

figure(3) 
plot(omega, abs(X2_F1), 'k-') 
set(gca,'FontSize', 14) 
xlabel('\omega (rad/s)') 
ylabel('|X_2/F_1)| (m/N)') 
axis([0 2000 0 3.3e-5]) 
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clear X1_F1 

k2_test = 0.9*k2:50:1.1*k2; 
for cnt = 1:length(k2_test) 
    w = wf; 
    k2 = k2_test(cnt); 
    a11 = -w^2*m1 + i*w*(c1 + c2) + k1 + k2; 
    a12 = -i*w*c2 - k2; 
    a21 = a12; 
    a22 = -w^2*m2 + i*w*c2 + k2; 
    A = [a11 a12; a21 a22]; 
    inverted_A = inv(A); 
    X1_F1(cnt) = inverted_A(1,1); 
end 

figure(4) 
plot(k2_test, abs(X1_F1), 'k-') 
set(gca,'FontSize', 14) 
xlabel('k_2 (N/m)') 
ylabel('|X_1/F_1)| at \omega_f (m/N)') 
xlim([min(k2_test) max(k2_test)]) 

index = find(X1_F1 == min(X1_F1)); 
k2_test(index) 
abs(X1_F1(index)) 

Chapter Summary

• Superposition enables the linear system response to each external force to be

calculated individually and the results summed to find the overall response.

• Complex matrix inversion can be used to determine the forced response for

systems with two (or more) degrees of freedom. While this approach is more

computationally expensive than modal analysis, it does not require proportional

damping.

• For a direct FRF, the response is measured at the same location where the

force is applied.

• For a cross FRF, the response is measured at a different location than where the

force is applied.

• Pairs of cross FRFs with the displacement and force subscripts switched, such as

X1 F2= and X2 F1= , are equal. This is referred to as reciprocity.

• A dynamic absorber may be added to a system to attenuate the original system

response at a particular frequency. The dynamic absorber may be realized using

a simple spring–mass–damper system. The natural frequency of the dynamic

absorber is matched to the frequency of interest.

• In modal analysis, the coupled differential equations of motion are uncoupled

using the modal matrix, which is composed of the system eigenvectors. Modal

analysis requires proportional damping.

• In modal analysis, the direct FRF in local coordinates is the sum of the single

degree of freedom FRFs in modal coordinates. The cross FRF is the sum of the

modal FRFs scaled by the eigenvectors.
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Exercises

1. A two degree of freedom spring–mass–damper system is shown Fig. P5.1. For

harmonic forced vibration (due to the external force at coordinate x2), complete

the following if k1 ¼ 2 � 105 N/m, c1 ¼ 60 N-s/m, m1 ¼ 2.5 kg, k2 ¼ 5.5

� 104 N/m, c2 ¼ 16.5 N-s/m, and m2 ¼ 1.2 kg.

(a) Verify that proportional damping exists.

(b) Define the modal matrix and determine the modal mass, stiffness, and

damping matrices. Note that the mode shapes should be normalized to

the force location.

(c) Write expressions for the uncoupled single degree of freedom FRFs in

modal coordinates, Q1 R1= and Q2 R2= , and the direct FRF in local

coordinates, X2 F2= .

(d) Plot the real and imaginary parts of the direct FRF, X2 F2= . Units should

be m/N for the vertical axis and rad/s for the horizontal (frequency) axis.

Use a frequency range of omega ¼ 0:0.01:500; (rad/s).

2. A two degree of freedom spring–mass–damper system is shown in Fig. P5.2.

For harmonic forced vibration (due to the external force applied at coordinate x2),
complete the following if k1 ¼ 8 � 107 N/m, c1 ¼ 1000 N-s/m, m1 ¼ 50 kg,

k2 ¼ 5 � 107 N/m, c2 ¼ 500 N-s/m, and m2 ¼ 12 kg.

(a) Show that proportional damping does not exist.

(b) Write a symbolic expression for the direct FRF X2 F2= as a function of the

frequency, o, and mass, stiffness, and damping values, m1,2, k1,2, and c1,2.
Use the complex matrix inversion approach.

m1

k1

x1

x2

k2

m2

c1

c2

F2e
iwt

Fig. P5.1 Two degree of

freedom spring–mass–

damper system under

forced vibration
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(c) Write a symbolic expression for the cross FRF X1 F2= as a function of the

frequency, o, and mass, stiffness, and damping values, m1,2, k1,2, and c1,2.
Use the complex matrix inversion approach.

(d) Plot the real and imaginary parts of the cross FRF, X1 F2= . Units should be

m/N for the vertical axis and rad/s for the horizontal (frequency) axis. Use a

frequency range of omega ¼ 0:0.01:3500; (rad/s).

3. Consider the single degree of freedom spring–mass system shown in Fig. P5.3,

where k ¼ 4 � 105 N/m and m ¼ 8 kg. It is being excited by a harmonic

forcing function, F1e
iof t, at a frequency, of.

(a) If the excitation frequency is 200 rad/s, design a dynamic absorber to

eliminate the vibration at coordinate x1. The only available spring for use

in the absorber is identical to the one already used in the system.

F2e
iwt

m1

k1

x1

x2

k2

m2

c1

c2

Fig. P5.2 Two degree of

freedom spring–mass–

damper system under

forced vibration

F1e
iwf t

m 

k 

x1

Fig. P5.3 Single degree of

freedom system excited by

the harmonic forcing function

F1e
iof t
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(b) If the 4 � 105 N/m absorber spring is used in conjunction with a 2 kg

absorber mass, at what forced excitation frequency (in rad/s) will the

steady-state vibration of coordinate x1 be eliminated?

4. A two degree of freedom spring–mass–damper system is shown in Fig. P5.4.

For harmonic forced vibration (due to the external force at coordinate x1),
complete the following if k1 ¼ 2 � 105 N/m, c1 ¼ 60 N-s/m, m1 ¼ 2.5 kg,

k2 ¼ 5.5 � 104 N/m, c2 ¼ 16.5 N-s/m, and m2 ¼ 1.2 kg.

(a) Verify that proportional damping exists.

(b) Define the modal matrix and determine the modal mass, stiffness, and

damping matrices. Note that the mode shapes should be normalized to

the force location.

(c) Write expressions for the uncoupled single degree of freedom FRFs in

modal coordinates, Q1 R1= and Q2 R2= , and the direct FRF in local

coordinates, X1 F1= .

(d) Plot the real and imaginary parts of the direct FRF, X1 F1= . Units should be

m/N for the vertical axis and rad/s for the horizontal (frequency) axis. Use a

frequency range of omega ¼ 0:0.1:500; (rad/s).

5. For the two degree of freedom spring–mass–damper system shown in Fig. P5.5,

complete the following if ka ¼ 2� 105 N/m, kb ¼ 5:5� 104 N/m,

ca ¼ 60 N-s/m, cb ¼ 16:5 N-s/m, ma ¼ 2:5 kg, and mb ¼ 1:2 kg.

(a) Obtain the equations of motion in matrix form and transform them into

modal coordinates q1 and q2. Normalize your eigenvectors to the force

location, coordinate x2. Verify that proportional damping exists.

F1e
iwt

m1

k1

x1

x2

k2

m2

c1

c2

Fig. P5.4 Two degree of

freedom spring–

mass–damper system under

forced vibration
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(b) Determine the FRFs Q1 R1= , Q2 R2= , and X2 F2= . Express them in equation

form and then plot the real and imaginary parts (in m/N) versus frequency

(in rad/s). Use a frequency range of 0:0.1:600; (rad/s).

6. A dynamic absorber is to be designed to eliminate the vibration at coordinate x1
for the system shown in Fig. P5.6, where the excitation frequency is 400 rad/s

and the force magnitude is 100 N. For the given system constants, determine the

values of the mass and spring constant for the dynamic absorber if the magnitude

of vibration for the absorber mass is 5 mm.

7. Given the modal mass matrix, mq ¼ 2 0

0 2

� �
kg, the modal stiffness matrix,

kq ¼ 5:858�106 0

0 3:414�107

� �
N/m, the modal matrix, P½ � ¼ 0:707 �0:707

1 1

� �
,

and the modal damping ratios, zq1 ¼ 0:04 and zq2 ¼ 0:02, complete the following.

m 

k 

x1

100ei400t

Fig. P5.6 Single degree of

freedom system excited by

the harmonic forcing function

100ei400t

F2e
iwt

ma

ka

x1

ca

mb

kb

x2

cb

Fig. P5.5 Two degree of

freedom spring–mass–damper

system under forced vibration
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(a) Plot the imaginary part (m/N) of the direct FRF X2 F2= . Use a frequency

range of 0:0.1:5000; (rad/s).

(b) Plot the imaginary part (in m/N) of the cross FRF X1 F2= . Use a frequency

range of 0:0.1:5000; (rad/s).

8. After installation, it was found that a particular machine exhibited excessive

vibration due to a harmonic excitation force with a frequency of 100 Hz.

A dynamic absorber was designed and added to the original system to attenuate

this vibration. If the resulting vibration magnitude of the absorber mass was

2 mm at 100 Hz and the excitation force magnitude was 25 N, determine the

stiffness of the spring (N/m) and mass (kg) used to construct the absorber. You

may neglect damping in your analysis.

9. Given the eigenvalues and eigenvectors for the two degree of freedom system

shown in Fig. P5.9, complete the following.

s1
2 ¼ �1� 106rad/s2 s2

2 ¼ �7� 106rad/s2

C1 ¼ 0:5
1

� �
C2 ¼ �2:5

1

� �

(a) Determine the modal matrices mq (kg), cq (N-s/m), and kq (N/m).

(b) Plot the imaginary part (in m/N) of the cross frequency response function,

X1 F2= . Use a frequency range of 0:0.1:3500; (rad/s).

m1 = 2 kg 

k1 = 7×106 N/m 

x1

x2

m2 = 2.5 

c1 = 140 N-s/m

c2 = 100

F2e
iwt

k2 = 5×106

Fig. P5.9 Two degree

of freedom spring–mass–

damper system under

forced vibration
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10. Given the eigenvalues and eigenvectors for the two degree of freedom system

shown in Fig. P5.9, determine the DC (zero frequency) compliance for the real

part of the direct FRF X2 F2= .

s1
2 ¼ �1� 106rad/s2 s2

2 ¼ �7� 106rad/s2

C1 ¼ 0:5
1

� �
C2 ¼ �2:5

1

� �
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Chapter 6

Model Development by Modal Analysis

Il n’est pas certain que tout soit incertain. (It is not certain
that everything is uncertain).

– Blaise Pascal

6.1 The Backward Problem

In Chaps. 1–5, we assumed a model and then used that model to determine the

system response in the time or frequency domain (or both). More often, however,

we have an actual dynamic system and would like to build a model that we can

use to represent its vibratory behavior in response to some external excitation.

For example, in milling operations, the flexibility of the cutting tool–holder–

spindle–machine structure (and sometimes the workpiece) determines the limiting

axial depth of cut to avoid chatter, a self-excited vibration (Schmitz and Smith

2009). In this case, the dynamic response at the free end of the tool (and/or at the

cutting location on the workpiece) is measured. Using this measured response,

a model in the form of modal parameters can be developed for use in a time-domain

simulation1 of the milling process. How can we work this “backward problem” of

starting with a measurement and developing a model? To begin, we need to

determine the modal mass, stiffness, and damping values from the measured

frequency response function (FRF).

1 In time-domain, or time-marching, simulation, the equations of motion that describe the process

behavior are solved at small increments in time using numerical integration (Schmitz and Smith

2009).

T.L. Schmitz and K.S. Smith, Mechanical Vibrations: Modeling and Measurement,
DOI 10.1007/978-1-4614-0460-6_6, # Springer Science+Business Media, LLC 2012
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6.2 Peak Picking

6.2.1 Single Degree of Freedom

After performing a measurement to determine the FRF for a physical structure (see

Chap. 7), we can use peak picking to estimate the modal parameters from the real

and imaginary parts of the FRF. We discussed this previously in Sect. 3.4, but let

us review it here and see how it fits into our task of model development.

Figure 6.1 shows a representation of a measured FRF with a single mode within

the measurement bandwidth. Therefore, a single degree of freedom model is suffi-

cient to describe this system’s dynamic behavior. In the figure, three frequencies,

o1, o2, and o3, and one peak value, A, are identified. Frequency o1 gives the

(undamped) natural frequency, on. Also, o2 (from the maximum real part peak)

occurs at on 1� zq
� �

and o3 (from the minimum real part peak) occurs at

on 1þ zq
� �

. (As we saw in Sect. 3.4, these approximations yield reasonable results

when the damping is low).

Differencing o3 and o2 gives:

o3 � o2 ¼ on 1þ zq
� �� on 1� zq

� � ¼ 2onzq: (6.1)

Because o2, o3, and on are known, Eq. 6.1 can be solved for zq. See Eq. 6.2:

zq ¼
o3 � o2

2on
(6.2)

w3

w2

w1

w

w

A 

Im
F1

X1

Re
F1

X1

Fig. 6.1 An example FRF

measurement. A single mode

is included within the

measurement bandwidth
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Next, from the imaginary part minimum peak, we have that A ¼ �1 2kqzq
� ��

.

Rearranging to solve for the modal stiffness, kq results in:

kq ¼ �1

2Azq
: (6.3)

Finally, given that o2
n ¼ kq mq

�
, we can solve for the modal mass mq using

Eq. 6.4, where compatible SI units are rad/s for the natural frequency, N/m for the

stiffness, and kg for the mass.

mq ¼ kq
o2

n

(6.4)

Now we have the natural frequency, stiffness, mass, and damping ratio for the

single degree of freedom system. We can also determine the modal (viscous)

damping coefficient using Eq. 6.5:

cq ¼ 2zq
ffiffiffiffiffiffiffiffiffiffi
mqkq

p
: (6.5)

The single degree of freedom FRF represents a special situation. In this case,

there is no difference between modal and local coordinates. There is no coordinate

transformation required to uncouple the equations of motion because there is only

one equation of motion. We can therefore define the single degree of freedom

model directly: k ¼ kq, c ¼ cq, and m ¼ mq; see Fig. 6.2. Given this model, we can

describe the transient and steady-state vibration for any harmonic forcing function

or initial conditions.

m x

k

f(t) = Feiw t

c

Fig. 6.2 Single degree of

freedom model determined

from the measurement

provided in Fig. 6.1
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IN A NUTSHELL Using the model developed by peak picking,

it is also possible to inexpensively examine “what if” scenarios.

What if we could double the damping? What if a dynamic absorber

was added? What if the system was exposed to a given time-varying

force? Such questions can be easily and quickly evaluated once we

have a model of the physical system. Some parts of a model might be easily

estimated, such as the mass. However, other parts are vexingly difficult to predict

without a measurement, particularly the damping.

6.2.2 Two Degrees of Freedom

What if there are two modes within the measurement bandwidth for the direct FRF?

The simple answer is that we can again use peak picking, but now we must repeat

the process for each of the two modes. Of course, a model with two degrees of

freedom will now be required as well. Consider the direct FRF measurement data

provided in Fig. 6.3 – six frequencies and two peak magnitudes are identified. The

three frequencies, o1, o2, and o3, and peak value, A, describe the lower frequency
mode with a natural frequency of on1 ¼ o1. The three frequencies, o4, o5, and o6,

and peak value, B, describe the higher frequency mode with a natural frequency of

on2 ¼ o4. Recall from Chap. 4 that the natural frequencies are the same in modal

and local coordinates, so we do not need to make any distinction regarding the

coordinate system (local or modal) for these frequencies.

For the lower frequency mode, differencing o3 and o2 gives:

o3 � o2 ¼ 2on1zq1:

w3 w6

w2

w1 w4

w5

B 

A 

Im
F1

X1

Re
F1

X1

w

w

Fig. 6.3 An FRF

measurement is displayed

where two modes are

contained in the measurement

bandwidth
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Because o2, o3, and on1 are known, this equation can be solved for the modal

damping ratio zq1.

zq1 ¼
o3 � o2

2on1

From the imaginary part minimum peak, we determine the modal stiffness

kq1 ¼ �1
2Azq1

. Next, we can solve for mq1 using mq1 ¼ kq1 o2
n1

�
. Finally, the modal

damping coefficient is cq1 ¼ 2zq1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mq1kq1

p
.

For the higher frequency mode, we follow the same steps. Differencing o6 and

o5 gives:

o6 � o5 ¼ 2on2zq2:

Because o5, o6, and on2 are known, we can solve for zq2.

zq2 ¼
o6 � o5

2on2

From the imaginary part minimum peak, we have that kq2 ¼ �1
2Bzq2

. Next,

we determine the modal mass, mq2, using mq2 ¼ kq2
o2

n2

. Finally, the modal damping

coefficient is cq2 ¼ 2zq2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mq2kq2

p
.

6.3 Building the Model

The peak picking approach is straightforward to implement, but you may wonder

why we can treat the individual modes from a direct FRF measurement separately

to find the modal parameters. The answer lies in the “undoing” of the modal

analysis steps. Recall that once we uncoupled the equations of motion to determine

the single degree of freedom modal coordinate models, we transformed back

to local coordinates by: (1) summing the modal FRFs for the direct FRF; and

(2) summing the modal FRFs scaled by the eigenvectors for the cross FRF.

In this case, we are beginning with the local coordinate direct FRF measurement,

X1/F1, and determining the modal FRFs, Q1/R1 and Q2/R2, by peak picking.

The two-mode fit of the direct FRF in local coordinates is simply the sum of the

individual modal responses:

X1

F1

¼ Q1

R1

þ Q2

R2

:

In the peak picking technique, we fit Q1/R1 and Q2/R2 separately. From that

fitting exercise, we defined the modal parameters. In matrix form, they are
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expressed as mq

� �¼ mq1 0

0 mq2

� 	
, cq
� �¼ cq1 0

0 cq2

� 	
, and kq

� �¼ kq1 0

0 kq2

� 	
for a two

degree of freedom system. Note that we have automatically assumed that propor-
tional damping holds when using this technique for model identification. However,

this is a reasonable assumption for most systems because structural damping is

typically low.

In order to complete the local coordinate model, we need to transform the modal

mass, damping, and stiffness matrices into local coordinates. We are already

familiar with the “forward” version of this transformation from local (or model)

to modal coordinates. For the mass matrices, we have:

mq

� � ¼ P½ �T m½ � P½ �;

where P½ � is the modal matrix. Its columns are the system eigenvectors (or mode

shapes):

P½ � ¼ C1 C2½ �:

To determine the mass matrix in local coordinates, the “backward” form of

the coordinate transformation from modal to local coordinates is:

m½ � ¼ P½ ��T mq

� �
P½ ��1;

where the “�1” superscript indicates the matrix inverse operation (inv(P)

in MATLAB®) and the “�T” represents the inverse of the modal matrix transpose

(inv(P0) in MATLAB®). Similarly, the damping and stiffness matrices in local

coordinates are determined using:

c½ � ¼ P½ ��T cq
� �

P½ ��1
and k½ � ¼ P½ ��T kq

� �
P½ ��1:

For a two degree of freedom model, the modal matrix can be represented as:

P½ � ¼ C1 C2½ � ¼ 1 1

p1 p2

� 	
;

where the first eigenvector, C1, corresponds to vibration at on1 and the second

eigenvector, C2, describes vibration at on2. In this case, we have normalized to

coordinate x1, so p1 and p2 give the ratio X2 X1= . This is a cross FRF, so we must

measure not only a direct FRF to determine the modal matrices but also a cross FRF

to identify the modal matrix. In performing these measurements, the force should be

applied to the physical system at the location of most interest in the structure’s

response.

Given the direct and cross FRF measurements, how do we determine p1 and p2?
To answer this question, we must again return to the modal analysis steps. As we
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just discussed, the transformation from modal to local coordinates includes a

summation of the modal contributions. For the direct FRF, we have:

X1

F1

¼ Q1

R1

þ Q2

R2

;

and the transformation for the cross FRF is:

X2

F1

¼ p1
Q1

R1

þ p2
Q2

R2

:

To determine p1, we use the first (lowest frequency) mode from both the direct

and cross FRFs. For the first mode at on1, the cross FRF is given by p1(Q1/R1) and

the direct FRF by Q1/R1. Taking their ratio enables us to determine p1; see Eq. 6.6.

X2

F1

X1

F1










on1

¼
p1

Q1

R1

Q1

R1

¼ p1: (6.6)

Similarly, we determine p2 from the second mode (with a natural frequency of

on2) from the direct and cross FRFs. This is shown in Eq. 6.7.

X2

F1

X1

F1










on2

¼
p2

Q1

R1

Q1

R1

¼ p2 (6.7)

Let’s graphically examine this identification of the eigenvectors and, subse-

quently, the modal matrix. Figure 6.4 shows a schematic of direct and cross FRF

measurements on a physical system (the “blob” representation). Figures 6.5 and 6.6

display the measurement results. They show the real and imaginary parts of the

direct and cross FRFs, respectively. However, the imaginary parts are sufficient to

x2

x1 f1

Test
system

Direct 

Cross 

Fig. 6.4 Representation of

direct and cross FRF

measurements on a physical

system
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identify the eigenvectors. In the direct FRF (Fig. 6.5), the local minimum values of

the imaginary parts are identified: A for the first mode (at on1) and B for the second

mode (at on2). The peak values C and D are identified in the cross FRF (Fig. 6.6).

These peak values can be used in Eqs. 6.6 and 6.7. Using Eq. 6.6, we determine p1 by:

Im
X2

F1

� �

Im
X1

F1

� �









on1

¼ C

A
¼ p1: (6.8)

The value of p2 is calculated using Eq. 6.7 and the peak heights B and D;
see Eq. 6.9. Note that we must pay attention to the sign of these heights. Once

p1 and p2 are determined, they are substituted into the modal matrix,

P½ � ¼ C1 C2½ � ¼ 1 1

p1 p2

� 	
.

wn1 wn2

A 

B 

Im
F1

X1

Re
F1

X1

w

w

Fig. 6.5 Direct FRF measurement results for the system shown in Fig. 6.4

wn1

wn2

C 

D Im
F1

X2

Re
F1

X2

w

w

Fig. 6.6 Cross FRF measurement results for the system shown in Fig. 6.4
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Im
X2

F1

� �

Im
X1

F1

� �









on2

¼ D

B
¼ p2 (6.9)

IN A NUTSHELL This technique is often used to visualize the

mode shape. First, a direct FRF is measured. Then, using a series of

measured cross FRFs, the height of the imaginary peak for the mode

of interest (relative to the height of the same mode in the direct

measurement) provides the mode shape component at that location.

With a little practice, it is possible to quickly describe the mode shape.

By the Numbers 6.1

In order to perform a numerical demonstration of the backward problem solution,

let’s begin with the forward problem solution by modal analysis for a two degree of

freedom spring–mass–damper model (as we discussed in Chap. 5). We will then use

the local coordinate direct and cross FRFs as the starting points for the backward

solution. Commençons!2

The two degree of freedom chain-type model is shown in Fig. 6.7. A harmonic

force, f1(t), is applied at coordinate x1. Let’s follow the five steps we identified in

Sect. 5.4 for the forward solution. The parameters for the model in Fig. 6.7 are

k1 ¼ 8 � 105 N/m, c1 ¼ 160N-s/m,m1 ¼ 3 kg, k2 ¼ 4 � 105 N/m, c2 ¼ 80N-s/m,

m2 ¼ 3 kg, and f1ðtÞ ¼ 200eiot N. The mass, damping, and stiffness matrices are:

left½m� ¼ m1 0

0 m2

� 	
¼ 3 0

0 3

� 	
kg;

c½ � ¼ c1 þ c2 �c2
�c2 c2

� 	
¼ 240 �80

�80 80

� 	
N�s=m,

and

k½ � ¼ k1 þ k2 �k2
�k2 k2

� 	
¼ 1:2� 106 �4� 105

�4� 105 4� 105

� 	
N=m:

Note that the matrices are symmetric (i.e., the off-diagonal terms are equal).

We proceed according to the steps identified in Table 5.1.

1. Verify proportional damping. The equality c½ � ¼ a m½ � þ b k½ � is true when a ¼ 0

and b ¼ 1/5000, so proportional damping holds. We require proportional

2 Let’s begin!
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damping for modal analysis, so this check must be completed for each forward

problem solution. For the backward problem, however, we assume that

proportional damping exists, so no check is applied.

240 �80

�80 80

� 	
¼ a

3 0

0 3

� 	
þ b 1:2� 106 �4� 105

�4� 105 4� 105

� 	

2. Ignore damping and the force to find the eigenvalues and eigenvectors.

3 0

0 3

� 	
s2 þ 1:2� 106 �4� 105

�4� 105 4� 105

� 	� 	
X1

X2

 �
¼ 0

0

 �

Obtain the eigenvalues from the characteristic equation:

3s2 þ 1:2� 106 �4� 105

�4� 105 3s2 þ 4� 105










 ¼ 0

or

3s2 þ 1:2� 106
� �

3s2 þ 4� 105
� �� �4� 105

� �2
¼ 9s4 þ 4:8� 106s2 þ 3:2� 1011 ¼ 0:

m1 x1 

k1 m1

m2

c1

m2 x2 

k2 c2

k2 (x2 − x1)

k2 (x2 − x1)m2x2

f1(t) = 200eiwt

m1x1 c1x1 k1x1

c2 (x2 − x1)

c2 (x2 − x1)

f1(t)

Fig. 6.7 By the Numbers 6.1 – two degree of freedom model (the free body diagrams for the two

masses are also included)
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The roots are s21 ¼ �78; 104:86 ¼ �o2
n1 and s22 ¼ �455; 228:47 ¼ �o2

n2.

The natural frequencies are on1 ¼ 279:47 rad/s (fn1 ¼ 44:48 Hz) and on2 ¼
674:71 rad/s (fn2 ¼ 107:38 Hz). The bottom (second) equation of motion from

the matrix format is � 4� 105X1 þ 3s2 þ 4� 105
� �

X2 ¼ 0. In order to normal-

ize the eigenvectors to x1 (the force location), the required ratio is:

X2

X1

¼ 4� 105

3s2 þ 4� 105
:

Substituting s21 ¼ �78; 104:86 gives the first eigenvector.

c1 ¼
1

4� 105

3 �78; 104:86ð Þ þ 4� 105

� �
8><
>:

9>=
>; ¼

1

2:414

( )

Substituting s22 ¼ �455; 228:47 gives the second eigenvector.

c2 ¼
1

4� 105

3 �45; 228:47ð Þ þ 4� 105

� �
8><
>:

9>=
>; ¼

1

�0:414

( )

3. Construct the modal matrix using the eigenvectors.

P½ � ¼ 1 1

2:414 �0:414

� 	

Use the modal matrix to transform into modal coordinates and uncouple the

equations of motion.

mq

� � ¼ P½ �T m½ � P½ � ¼ 20:482 0

0 3:514

� 	
kg

cq
� � ¼ P½ �T c½ � P½ � ¼ 319:95 0

0 319:95

� 	
N-s=m

kq
� � ¼ P½ �T k½ � P½ � ¼ 1:600� 106 0

0 1:600� 106

� 	
N=m

Transform the force vector from local to modal coordinates.

R
*
n o

¼ R1

R2

 �
¼ P½ �T ~F

� � ¼ 1 2:414
1 �0:414

� 	
200

0

 �
¼ 200

200

 �
N

6.3 Building the Model 209



www.manaraa.com

As a check, the single degree of freedom natural frequencies can be calculated

using the modal parameters; they are on1 ¼
ffiffiffiffiffiffi
kq1
mq1

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1:6�106

20:482

q
¼ 279:49 rad/s

and on2 ¼
ffiffiffiffiffiffi
kq2
mq2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1:6�106

3:514

q
¼ 674:78 rad/s. These values do not match the

original natural frequencies (determined from the eigenvalues) exactly due to

round-off error, but they do verify that the modal mass and stiffness parameters

are correct.

4. Write the FRFs for the two single degree of freedom systems in modal

coordinates. For the first natural frequency, the FRF is:

Q1

R1

¼ 1

1:600� 106
1� r21
� �� i 2 0:0279ð Þr1ð Þ
1� r21
� �2 þ 2 0:0279ð Þr1ð Þ2

 !
;

where r1 ¼ o 279:49= and the damping ratio is zq1 ¼ 319:95

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:600�106 20:482ð Þ

p ¼
0:0279. For the second natural frequency, the FRF is:

Q2

R2

¼ 1

1:600� 106
1� r22
� �� i 2 0:0675ð Þr2ð Þ
1� r22
� �2 þ 2 0:0675ð Þr2ð Þ2

 !
;

where r2 ¼ o 674:78= and zq2 ¼ 319:95

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:600�106 3:514ð Þ

p ¼ 0:0675.

5. Transform back to local coordinates. The direct FRF, X1 F1= ¼ Q1 R1=ð Þþ
Q2 R2=ð Þ, is plotted in Fig. 6.8. The cross FRF, X2 F1= ¼ p1 Q1 R1=ð Þþ
p2 Q2 R2=ð Þ, is displayed in Fig. 6.9.
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Fig. 6.8 By the Numbers 6.1 – Direct FRF X1/F1 (local coordinates)
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We can now treat Figs. 6.8 and 6.9 as measurement results (0.1 rad/s frequency

resolution) and identify the two degree of freedom model that can be used to

represent this dynamic system; this is the backward solution. We will assume a

chain-type model format, as shown in Fig. 6.7. However, this is not necessary in

general; we will discuss this further in Sect. 6.6. As shown in Figs. 6.3 and 6.6, the

peak picking approach requires that we identify six frequencies and four peak

heights; see Figs. 6.10 (direct FRF) and 6.11 (cross FRF). The frequencies and

heights are summarized in Table 6.1.

Let’s begin with the 279.4 rad/s mode. We determine the modal damping ratio

using zq1 ¼ 287:2�271:6
2 279:4ð Þ ¼ 0:0279. From the imaginary part minimum peak, A,

the modal stiffness is kq1 ¼ �1

2 �1:125�10�5ð Þ0:0279 ¼ 1:593� 106 N/m. Next, the

modal mass is mq1 ¼ 1:593�106

279:42
¼ 20:406 kg. Finally, the modal damping coefficient

is cq1 ¼ 2 0:0279ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20:406 1:593� 106

� �q
¼ 318:14 N-s/m.

We complete the same calculations for the 673.2 rad/s mode. Themodal damping

ratio is zq2 ¼ 718:6�628:1
2 673:2ð Þ ¼ 0:0672. Using the imaginary part minimum peak, B, the

modal stiffness is determined by kq2 ¼ �1

2 �4:639�10�6ð Þ0:0672 ¼ 1:604� 106 N/m. The

modal mass is mq2 ¼ 1:604�106

673:22
¼ 3:539 kg and the modal damping coefficient is

cq2 ¼ 2 0:0672ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:539 1:604� 106

� �q
¼ 320:22 N-s/m. We now have all the

values required to fully populate the modal mass, damping, and stiffness matrices.

mq

� � ¼ 20:406 0

0 3:539

� 	
kg
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Fig. 6.9 By the Numbers 6.1 – Cross FRF X2/F1 (local coordinates)
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cq
� � ¼ 318:14 0

0 320:22

� 	
N-s=m

kq
� � ¼ 1:593� 106 0

0 1:604� 106

� 	
N=m
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Fig. 6.11 By the Numbers 6.1 – Peak picking heights for the cross FRF X2/F1
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Fig. 6.10 By the Numbers 6.1 – Peak picking frequencies and heights for the direct FRF X1/F1
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Next, we determine the eigenvectors using the peak heights A, B, C, and D.

For the lower frequency mode, p1 ¼ C
A ¼ �2:396�10�5

�1:125�10�5 ¼ 2:130. For the higher fre-

quency mode, p2 ¼ D
B ¼ 1:911�10�6

�4:639�10�5 ¼ �0:412. The modal matrix is:

P½ � ¼ 1 1

2:130 �0:412

� 	
:

The mass, damping, and stiffness matrices in local coordinates are:

m½ � ¼ P½ ��T mq

� �
P½ ��1 ¼ 3:021 0

0 3:707

� 	
¼ m1 0

0 m2

� 	
kg;

c½ � ¼ P½ ��T cq
� �

P½ ��1 ¼ 233:19 �85:27
�85:27 98:79

� 	
¼ c1 þ c2 �c2

�c2 c2

� 	
N-s=m;

and

k½ � ¼ P½ ��T kq
� �

P½ ��1 ¼ 1:168� 106 �4:272� 105

�4:272� 105 4:948� 105

� 	

¼ k1 þ k2 �k2
�k2 k2

� 	
N=m:

IN A NUTSHELL The forms on the right hand side of the local

coordinate mass, damping, and stiffness matrices indicate that we

had an idea what the model should look like. That is, we assumed a

chain-type model. If our idea of the model is right, then the local

mass, stiffness, and damping matrices should have this form. We do

not always know what the model should be, but the measurements guide us. For

example, how many modes do we see in the measured FRF? That is, how many

degrees of freedom are required to represent the physical system in the frequency

range we measured and in the locations we measured.

We are almost finished, but need to make an engineering decision. For

the damping matrix, we have that c2 ¼ 98.79 N-s/m from the (2,2) term. For the

(1,2) and (2,1) terms, however, c2 ¼ 85.27 N-s/m. Let’s use the average, c2 ¼

Table 6.1 By the
Numbers 6.1 – peak picking

frequencies and heights from

Figs. 6.10 and 6.11

Frequency (rad/s) Peak height (m/N)

o1 ¼ 279:4 A ¼ �1:125� 10�5

o2 ¼ 271:6 B ¼ �4:639� 10�6

o3 ¼ 287:2 C ¼ �2:396� 10�5

o4 ¼ 673:2 D ¼ 1:911� 10�6

o5 ¼ 628:1

o6 ¼ 718:6
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98:79þ 85:27ð Þ 2= ¼ 92:03 N - s=m. From the (1,1) term, then, c1 ¼
233:19� 92:03 ¼ 141:16 N-s=m. We complete the same analysis for the stiffness

values. Using the (1,2), (2,1), and (2,2) values from the stiffness matrix,

k2 ¼ 4:948�ð 105 þ 4:272� 105Þ 2= ¼ 4:61� 105 N/m. Using the (1,1) term, k1 ¼
1:168� 106 � 4:610� 105 ¼ 7:07� 105 N=m. The original model parameters,

backward solution values, and percent differences are provided in Table 6.2. The

disagreement is the result of round-off error in both the forward and backward

solutions, assumptions in the peak picking approach, and the engineering decision

to use the average c2 and k2 values.

6.4 Peak Picking for Multiple Degrees of Freedom

The peak picking method is straightforward to extend to additional degrees of

freedom. For the cutting tool–holder–spindle–machine structure mentioned in

Sect. 6.1, it is common for many modes to exist in the 0–5,000 Hz frequency

range. An example direct FRF measurement for a 47-mm-diameter shell mill3

which was clamped in a high-speed spindle is provided in Fig. 6.12. The measure-

ment was performed at the free end of the cutting tool. There are five modes which

were selected for fitting. The three frequencies and peak height for each mode

are included in Table 6.3. The corresponding modal stiffness and damping ratio are

also identified.

The five-mode fit and original data are plotted together in Fig. 6.13; the code

used to generate the modal fit is provided in MATLAB® MOJO 6.1. The fit to the direct

FRF measurement is simply the sum of the modal contributions:

X1

F1

¼
X5
n¼1

Qn

Rn
: (6.10)

Table 6.2 By the Numbers 6.1 – results for the backward problem solution

Original model Backward solution Percent error (%)

m1 (kg) 3 3.021 �0.7

c1 (N-s/m) 160 141.16 11.8

k1 (N/m) 8 � 105 7.07 � 105 11.6

m2 3 3.707 �23.6

c2 80 92.03 �15.0

k2 4 � 105 4.61 � 105 �15.3

3 Shell mills are typically used to machine large flat surfaces.
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Fig. 6.12 Direct FRF measurement for cutting tool–holder–spindle–machine structure. The

modes selected for fitting are identified numerically (1 through 5)
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Fig. 6.13 Modal fit to the cutting tool–holder–spindle–machine direct FRF

Table 6.3 Modal fitting parameters for the cutting tool–holder–spindle–machine direct FRF

Mode f1 (Hz) f2 (Hz) f3 (Hz) Imaginary peak (m/N) fn (Hz) kq (N/m) zq
1 480 468 493 �2.89 � 10�8 480 6.65 � 108 0.026

2 950 906 992 �2.14 � 10�7 950 5.19 � 107 0.045

3 1,630 1,542 1,745 �2.13 � 10�8 1,630 3.79 � 108 0.062

4 2,842 2,770 2,915 �1.12 � 10�8 2,842 1.72 � 109 0.026

5 4,150 3,823 4,500 �2.78 � 10�8 4,150 2.19 � 108 0.082
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MATLAB
®

 MOJO 6.1 
% matlab_mojo_6_1.m

clc
clear all
close all

% Modal fit
f = 200:0.2:5000;  % Hz
kq = 6.65e8;       % N/m
zetaq = 0.026;
fn = 480;          % Hz
r = f/fn;
real_part = 1/kq*(1-r.^2)./((1-r.^2).^2 + (2*zetaq*r).^2);
imag_part = 1/kq*(-2*zetaq*r)./((1-r.^2).^2 + (2*zetaq*r).^2);
Q1_R1 = real_part + 1i*imag_part;    % m/N

kq = 5.19e7;       % N/m
zetaq = 0.045;
fn = 950;          % Hz
r = f/fn;
real_part = 1/kq*(1-r.^2)./((1-r.^2).^2 + (2*zetaq*r).^2);
imag_part = 1/kq*(-2*zetaq*r)./((1-r.^2).^2 + (2*zetaq*r).^2);
Q2_R2 = real_part + 1i*imag_part;    % m/N

kq = 3.79e8;       % N/m
zetaq = 0.062;
fn = 1630;          % Hz
r = f/fn;
real_part = 1/kq*(1-r.^2)./((1-r.^2).^2 + (2*zetaq*r).^2);
imag_part = 1/kq*(-2*zetaq*r)./((1-r.^2).^2 + (2*zetaq*r).^2);
Q3_R3 = real_part + 1i*imag_part;    % m/N

kq = 1.72e9;       % N/m
zetaq = 0.026;
fn = 2842;          % Hz
r = f/fn;
real_part = 1/kq*(1-r.^2)./((1-r.^2).^2 + (2*zetaq*r).^2);
imag_part = 1/kq*(-2*zetaq*r)./((1-r.^2).^2 + (2*zetaq*r).^2);
Q4_R4 = real_part + 1i*imag_part;    % m/N

kq = 2.19e8;       % N/m
zetaq = 0.082;
fn = 4150;          % Hz
r = f/fn;
real_part = 1/kq*(1-r.^2)./((1-r.^2).^2 + (2*zetaq*r).^2);
imag_part = 1/kq*(-2*zetaq*r)./((1-r.^2).^2 + (2*zetaq*r).^2);
Q5_R5 = real_part + 1i*imag_part;    % m/N

X1_F1 = Q1_R1 + Q2_R2 + Q3_R3 + Q4_R4 + Q5_R5; 

figure(1)
subplot(211)
plot(f, real(X1_F1), 'k:')
set(gca,'FontSize', 14)

axis([200 5000 -12e-8 14e-8])
ylabel('Real(X_1/F_1) (m/N)')
subplot(212)
plot(f, imag(X1_F1), 'k:')
axis([200 5000 -24e-8 1e-8])
set(gca,'FontSize', 14)
xlabel('f (Hz)')
ylabel('Imag(X_1/F_1) (m/N)')
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IN A NUTSHELL There are other curve fitting methods, of

course. The peak picking technique described here is easy to

visualize and works well, provided that the modes are well separated.

Naturally, the modal parameters are sensitive to the peaks used in the

curve fitting.

6.5 Mode Shape Measurement

It is often of interest to determine the mode shapes (eigenvectors) for a structure,

even in the absence of building a model. This can give insight into: (1) the source of

a particular natural frequency; and (2) how the structure might be modified to

reduce the magnitude of a particular mode.4

Consider the steel rod from the beam experimental platform (BEP).5 What if this

beam was not clamped in the platform but was floating in space instead? In this

case, the boundary conditions would be free-free; there would be no external

restrictions on the beam’s motion. Let’s discuss the mode shapes for this free-free

beam. First, there are two rigid body modes. Second, there are an infinite number of

bending modes for the continuous beam.6

One of the rigid body modes is depicted in Fig. 6.14. This mode is a translation

of the rigid beam due to a constant (zero frequency or DC) force applied at the

center of mass. The corresponding rigid body mode frequency is zero because the

beam does not actually oscillate. The other rigid body mode is represented in

Fig. 6.15. It is a rotation of the rigid beam due to a constant force that is not applied

at the center of mass. The vibration frequency is again zero because there is no

relative motion of points along the beam, only the rigid body rotation.

Fig. 6.14 Translational rigid

body mode

4One structural modification technique we have already discussed is the addition of a dynamic

absorber (Sect. 5.4).
5 The BEP was introduced in Sect. 2.6.
6 There are also other modes of vibration, but we’ll discuss these in Chap. 8.
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The bending modes for a free-free, uniform cross-section beam can be described

analytically (Blevins 2001). The mode shape function that describes the relative

vibration magnitudes at locations, x, along the beam length, l, is:

ci ¼
1

2
cosh

lix
l

� �
þ cos

lix
l

� �
� si sinh

lix
l

� �
þ sin

lix
l

� �� �� �
; (6.11)

where i ¼ 1, 2, 3,. . . is the mode shape number and the constants li and si for the
first two modes are provided in Table 6.4. The first two mode shapes, which have

been normalized to the end of the beam (x ¼ 0), are displayed in Fig. 6.16.

We see in Fig. 6.16 that there are points where the mode shapes change sign and

therefore pass through zero. These points are referred to as nodes and identify

locations along the beam where the vibration response (at the corresponding natural

frequency) is zero regardless of the forcemagnitude. Note, however, that the locations

of the two nodes for the first mode, which describes the beam’s shape for vibration at

the first natural frequency, do not coincide with the locations of the three nodes for the

second mode, which corresponds to vibration at the second natural frequency.7

Because the beam’s response to an external force is the superposition of all the

modes, there is still motion at all points along the beam, in general, when it is excited.

For the steel rod from the BEP (12.7 mm diameter, 153 mm long), let’s assume

that we placed the beam on a very flexible support, such as a block of soft foam, to

mimic free-free boundary conditions8 and then measured the direct FRF at location 1

and the cross FRFs at locations 2 through 4. These locations are identified in Fig. 6.17,

where 2 (at x/l ¼ 0.132) and 4 (at x/l ¼ 0.5) are nodes for c2 and 3 (at x/l ¼ 0.224)

Fig. 6.15 Rotational rigid

body mode

Table 6.4 Constants for the free-free beam mode shape calculation

in Eq. 6.11 (Blevins 2001)

Mode i li si
1 4.73004074 0.982502215

2 7.85320462 1.000777312

7 The number of nodes is equal to i + 1 for a free-free beam.
8 Because the foam base is much more flexible than the beam, free-free conditions are

approximated. Alternately, we could support the beam using flexible bungee cords. Both

techniques are applied in practice.
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is a node for c1. If we applied the force at location 1 for each measurement, then the

four FRFs would be X1/F1, X2/F1, X3/F1, and X4/F1. The imaginary parts of these

FRFs are displayed in Fig. 6.18, where the measurement bandwidth only includes the

first two modes.

For the first mode at a natural frequency of 2,446 Hz, we notice two distinct

behaviors. First, the peak height at location 3 is zero. This demonstrates an important

consideration for experimental identification of mode shapes – if the transducer is

positioned or the force is applied at or near a node, then the response will have a

magnitude that is close to (or equal to) zero for the mode shape that includes that node

at the selected measurement location. Because the node locations are not known in

advance, many measurements are typically required on a given structure to

x1 x3 x2 

0.5l

0.224l

0.132l

x4 

First mode shape 

x1 x3x2 x4

Second mode shape 

Fig. 6.17 Direct and cross FRF measurement locations for the free-free steel rod

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

ψ
1

0 0.2 0.4 0.6 0.8 1
−1

0

1

ψ
2

x/l

Fig. 6.16 The first two bending mode shapes for a free-free beam
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Fig. 6.18 (a) The imaginary parts of the four direct and cross FRFs for the free-free steel rod

viewed at full scale. (b) The imaginary parts of the four direct and cross FRFs for the free-free steel

rod viewed at a reduced scale to show the second mode
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adequately describe all the mode shapes within the measurement bandwidth. Second,

the sign of the peak height switches between locations 2 and 4. The motion at these

points is out of phase when the beam vibrates in the first mode shape. For the second

mode at 6,741 Hz, we see a zero response at both locations 2 and 4. Also, the peak

heights switch sign between locations 1 and 3. These sign switches and height

variations with measurement location correspond directly to the eigenvector identifi-

cation approach we detailed in Sect. 6.3.

Next, let’s insert the rod in the BEP with an overhang length of 130 mm so that it

now has fixed-free boundary conditions (it is a cantilever beam). The first three

mode shapes are shown in Fig. 6.19.9 These are described using the mode shape

function in Eq. 6.12. The mode shapes are normalized to the beam’s free end and

the constants li and si (i ¼ 1 to 3) are provided in Table 6.5.

ci ¼
1

2
cosh

lix
l

� �
� cos

lix
l

� �
� si sinh

lix
l

� �
� sin

lix
l

� �� �� �
(6.12)
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Fig. 6.19 The first three bending mode shapes for a fixed-free beam

Table 6.5 Constants for the fixed-free beam mode shape calculation

in Eq. 6.12 (Blevins 2001)

Mode i li si
1 1.87510407 0.734095514

2 4.69409113 1.018467319

3 7.85475744 0.999224497

9 The number of nodes is equal to i � 1 for a fixed-free beam.
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We will select three measurement locations along the beam’s axis, as shown

in Fig. 6.20: x1 ¼ l, x2 ¼ l/2, and x3 ¼ l/4 (this location is near a node for the

third mode shape); the force is applied at x1. The imaginary parts of the direct and

cross FRFs are displayed in Fig. 6.21a and b. Because there are three modes within

the measurement bandwidth and we performed measurements at three locations,

we can identify the eigenvectors and modal matrix for the three degree of freedom

system. This is actually a requirement for modal analysis. The number of measure-

ment locations and therefore the number of direct and cross FRFs must always be

equal to the number of degrees of freedom (i.e., the number of modes selected for

modeling). This produces a square modal matrix.10 Using the peak heights A
through I identified in Fig. 6.21, the modal matrix is:

P ¼

A

A
¼ 1

B

B
¼ 1

C

C
¼ 1

D

A

E

B

F

C

G

A

H

B

I

C

2
66666664

3
77777775
¼

1 1 1

0:3395 �0:7137 0:0197

0:0973 �0:4173 0:7245

2
64

3
75; (6.13)

where the eigenvectors are normalized to the beam’s free end.

x1 x2x3

4
l

2
l

l

x1x2 x3

First mode shape 

Second mode shape 

x1x2x3

Third mode shape 

Fig. 6.20 Direct and cross

FRF measurement locations

for the BEP fixed-free

steel rod

10 In a square matrix, the number of rows and columns is the same.
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Fig. 6.21 (a) The imaginary parts of the three direct and cross FRFs for the BEP fixed-free steel

rod (full scale). The peak heights A, D, and G are labeled. (b) The imaginary parts of the three

direct and cross FRFs for the BEP fixed-free steel rod (reduced scale). The peak heights B, C, E, F,
H, and I are labeled
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6.6 Shortcut Method for Determining Mass, Stiffness,

and Damping Matrices

So far, we have only discussed the chain-type spring–mass–damper model shown in

Fig. 6.7 for the backward problem solution. Of course, there may be situations

where the structure’s design and/or behavior warrant another model type. For

example, an automobile’s suspension response may be better described using the

model shown in Fig. 6.22, which includes a rigid, massless bar, two concentrated

masses, two degrees of freedom, and two springs and viscous dampers.

Let’s next describe a shortcut method that can be applied to determine the local

coordinate mass, damping, and stiffness matrices for lumped-parameter models,

such as those shown in Figs. 6.7 and 6.22. We will begin with Fig. 6.7 since we have

already identified the matrices using the free body diagrams. In the shortcut method,

the force required to give a unit acceleration to the coordinate in question, while

holding the other coordinate(s) motionless, is used to determine the on-diagonal

terms in the mass matrix. The force that is required to hold the other coordinate(s)

motionless defines the off-diagonal terms. Similarly, the damping matrix is deter-

mined using the force required to give a unit velocity and the stiffness matrix is

identified using the force required to give a unit displacement.

The mass matrix for the two degree of freedom model has four terms: two on-

diagonals, m11 and m22, and two off-diagonals, m12 and m21.

m ¼ m11 m12

m21 m22

� 	

To determine the mass matrix, we neglect the influence of the springs, dampers,

and external forces. Let’s begin with m11 on-diagonal term. We need to find the

m2 m1 

x1 x2 

3
l

3
l

3
l

c1k1c2k2 

Fig. 6.22 Potential model for

describing an automobile’s

suspension behavior
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force, fm11
, required to give coordinate x1 a unit acceleration, €x1 ¼ 1, while holding

the other coordinate, x2, motionless. When we remove the springs and dampers, the

two coordinates are not connected, so the analysis is simple. The forces are shown

in Fig. 6.23. Summing the forces in the x1 direction to zero gives:

fm11
¼ m1€x1 ¼ m1ð1Þ ¼ m1:

The m11 on-diagonal term is, therefore, m1. The m12 off-diagonal term is the

force, fm12
, required to hold x2 stationary while giving x1 a unit acceleration. In the

absence of the springs and dampers, no force is necessary to restrict x2, as shown in
Fig. 6.24. Therefore, the force summation in the x2 direction gives:

fm12
¼ 0:

We find the other on-diagonal term, m22, by applying unit acceleration to x2
while holding x1 motionless. Using Fig. 6.25, the required force is:

fm22
¼ m2€x2 ¼ m2ð1Þ ¼ m2:

fm12

m2 x2

Fig. 6.24 Force balance for

determining m12

m2x2

fm22

m2 x2 

Fig. 6.25 Force balance for

determining m22

m1
x1

m1x1

fm11
Fig. 6.23 Force balance for

determining m11
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Them21 off-diagonal term is the force, fm21
, required to hold x1 fixed while giving

x2 a unit acceleration. It is calculated using Fig. 6.26. We find that fm21
¼ 0. We did

not actually need to calculate fm21
, however. Because the mass matrix is symmetric,

we know that fm21
¼ fm12

. However, it serves as a good check to ensure that our fm12

calculation was correct. We can now populate the mass matrix for Fig. 6.7.

m ¼ m11 m12

m21 m22

� 	
¼ m1 0

0 m2

� 	

Of course, this is the same result we obtained previously. To determine the

stiffness matrix, we neglect the masses, dampers, and external forces.

k ¼ k11 k12
k21 k22

� 	

To find k11, we need the force, fk11 , required to give coordinate x1 a unit

displacement, x1 ¼ 1, while holding the other coordinate, x2, motionless. The free

body diagram is provided in Fig. 6.27. Summing the forces in the x1 direction gives:

fk11 ¼ k1x1 þ k2x1 ¼ k1ð1Þ þ k2ð1Þ ¼ k1 þ k2:

The off-diagonal term, k12, is the force required to hold x2 stationary while

giving x1 a unit displacement. Using Fig. 6.28, we see that:

fk12 ¼ �k2x1 ¼ �k2ð1Þ ¼ �k2:

fk11

m1 x1 

k2x1

k1x1
Fig. 6.27 Force balance for

determining k11

fm21

m1 x1 

Fig. 6.26 Force balance for

determining m21
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We determine k22 from the force, fk22 , required to give coordinate x2 a unit

displacement while holding x1 stationary. The free body diagram is displayed in

Fig. 6.29. The force summation in the x2 direction gives:

fk22 ¼ k2x2 ¼ k2ð1Þ ¼ k2:

Finally, we find k21 from the force required to hold x1 fixed while giving x2 a unit
displacement. See Fig. 6.30, where the force balance requires that fk21 ¼ �k2, which
satisfies our symmetry requirement. The system stiffness matrix is:

k ¼ k11 k12
k21 k22

� 	
¼ k1 þ k2 �k2

�k2 k2

� 	
;

which agrees with our previous result using the free body diagrams. We could

complete the analysis for damping by applying a unit velocity and neglecting the

springs, masses, and external forces, but we can see from Fig. 6.7 that the dampers

are located at the same physical locations as the springs. Therefore, the damping

matrix will have the same form as the stiffness matrix.

fk21

m1 x1

k2x2

Fig. 6.30 Force balance for

determining k21

fk12
k2x1

m2 
x2 

Fig. 6.28 Force balance for

determining k12

fk22
k2x2

m2 x2 

Fig. 6.29 Force balance for

determining k22
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6.6.1 Linearized Pendulum

Let’s next use the shortcut method for the linearized pendulum. We will begin with

the traditional free body diagram analysis and then follow it with the new shortcut

method. The pendulum, relevant geometry, and free body diagram are shown in

Fig. 6.31. As seen in Sect. 2.5.2, we can sum the moments, M, about O using the

force components that are perpendicular to the massless rod. Because we are

summing about O, the reaction components at the pivot may be neglected. Also,

the free body diagram includes d’Alembert’s inertial moment, J€y ¼ ml2€y, with the

mass moment of inertia, J, so that
P

MO ¼ 0.

The moment sum about O from Fig. 6.31 is:

X
MO ¼ J€yþ kd cos yð Þ � aþ mg sin yð Þ � l ¼ 0: (6.14)

Substituting J ¼ ml2 and d ¼ a sin yð Þ gives:

ml2€yþ ka2 cos yð Þ sin yð Þ þ mgl sin yð Þ ¼ 0: (6.15)

For small angles, we can approximate using sin yð Þ � y and cos yð Þ � 1. Substi-

tution yields:

ml2€yþ ka2yþ mgly ¼ ml2€yþ ka2 þ mgl
� �

y ¼ 0: (6.16)

k 

kd 

kd 

O 

m 

Massless rod
(length is l)  

θ

l − a

θ

θ

a

O 
Rx

Ry

θJ

mg 

mg 
θ

θ

a

d =asin(q)

kd sin(q )

mg cos(q )

mg sin(q )

kd cos(q)

Fig. 6.31 Linearized pendulum and its free body diagram
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We can convert to small horizontal displacements, x, of the pendulum mass by

again applying the small angle approximation. See Fig. 6.32, where x ¼ l sin yð Þ � ly
and, subsequently, €x � l€y for a constant rod length. Rewriting Eq. 6.16 in terms

of x gives:

ml2
€x

l
þ ka2 þ mgl
� � x

l
¼ ml€xþ ka2

l
þ mg

� �
x ¼ m€xþ ka2

l2
þ mg

l

� �
x ¼ 0: (6.17)

Now let’s use the shortcut method. To find the mass term for the single degree of

freedom equation of motion, we need to determine the force, fm, required to give the
pendulum mass a unit (horizontal) acceleration. Figure 6.33 shows the forces,

where the spring is neglected. Summing the moments about O gives:

X
MO ¼ fml� m€xl ¼ fml� mð1Þl ¼ fml� ml ¼ 0: (6.18)

Simplifying Eq. 6.18 gives fm ¼ m. To determine the stiffness term, we find the

force, fk, required to give the pendulum mass a unit displacement. In this case,

x 

l 

θ

m 

O Fig. 6.32 Relationship

between small angles, y, and
horizontal displacements, x,
of the pendulum mass

x 

fmmx m 

l 

O 

Fig. 6.33 Force balance to

determine the mass term
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we neglect the inertial influence of the mass in the free body diagram but must include

the gravitational effects; see Fig. 6.34. Summing the moments about O gives:

X
MO ¼ fkl� k x

a

l

� �
a� mg

x

l
l ¼ fkl� k

a

l

� �
a� mg ¼ fkl� k

a2

l
� mg: (6.19)

Note that the displacement at the spring is not x ¼ 1. Rather, it is scaled by the

distance from the pivot O and is x a l=ð Þ ¼ a l= for a unit displacement x. Solving for
fk from Eq. 6.19 gives the stiffness term:

fk ¼ ka2

l2
þ mg

l
: (6.20)

As expected, substitution in the differential equation of motion gives the same

result that we obtained from the free body diagram approach; see Eq. 6.17.

6.6.2 Automobile Suspension Model

Let’s conclude this section (and chapter) by determining the mass, damping, and

stiffness matrices for the automobile suspension model shown in Fig. 6.22. We will

begin with the 2�2 mass matrix for the two degree of freedom system. We deter-

mine m11 from the force, fm11
, required to apply a unit acceleration to x1 while

holding x2 stationary. The force balance is shown in Fig. 6.35, where the motionless

x2 is represented as a pivot for the rigid, massless bar. The accelerations at the two

masses are both €x1 2= ¼ 1 2= because they are half the distance from the pivot

relative to x1. Summing the moments (clockwise moments are taken to be positive)

about the x2 pivot gives:

X
M ¼ �fm11

� 2l
3
þ m1

€x1
2
� l
3
þ m2

€x1
2
� l
3

¼ �fm11
� 2l
3
þ m1

1

2
� l
3
þ m2

1

2
� l
3
¼ 0: (6.21)

fm

mg 

a 

O 

mg 
θ

l
x

mg sin(q ) = mgq = mg

k x
l
a

Fig. 6.34 Force balance to

determine the stiffness term
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Dividing by l 3= and solving for fm11
yield:

fm11
¼ m1 þ m2

4
: (6.22)

The off-diagonal term m12 is the force that is necessary to hold x2 motionless.

The forces are displayed in Fig. 6.36. The force summation is:

X
f ¼ fm11

þ fm12
� m1

€x1
2
þ m2

€x1
2
¼ fm11

þ fm12
� m1

1

2
þ m2

1

2
¼ 0: (6.23)

Solving Eq. 6.23 for fm12
gives:

fm12
¼ �fm11

þ m1

2
� m2

2
: (6.24)

Substituting for fm11
from Eq. 6.22 gives the final expression for fm12

:

fm12
¼ � m1 þ m2

4

� �
þ m1

2
� m2

2
¼ m1 � 3m2

4
: (6.25)

We will next find m22 by applying unit acceleration to x2 while holding x1
stationary. The corresponding forces are shown in Fig. 6.37. The moment summa-

tion about the x1 pivot is:

X
M ¼ fm22

� 2l
3
� m1

€x1
2
� l
3
� m2

3€x1
2

� 3l
3
¼ fm22

� 2l
3
� m1

1

2
� l
3
� m2

3

2
� 3l
3
¼ 0:

(6.26)
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x1m2

2
x1m1

fm11

fm12

Fig. 6.36 Force balance to

determine m12

x1 
x22

x1m2

2
x1m1

fm11
Fig. 6.35 Force balance to

determine m11
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Dividing by l 3= and solving for fm22
lead to Eq. 6.27:

fm22
¼ m1 þ 9m2

4
(6.27)

Let’s findm21 as a check on ourm12 result. It is the force required to hold x1 fixed
while applying the unit acceleration to x2. The forces are displayed in Fig. 6.38 and
the force summation gives:

X
f ¼ fm21

þ fm22
� m1

€x2
2
þ m2

3€x2
2

¼ fm21
þ fm22

� m1

1

2
� m2

3

2
¼ 0: (6.28)

Solving for fm21
and substituting for fm22

yield the m21 value; see Eq. 6.29.

As anticipated, it matches the m12 result provided in Eq. 6.25. The mass matrix is

provided in Eq. 6.30. We note that it is symmetric and, because the off-diagonals

are nonzero, the equations of motion are coupled through the mass matrix.

fm21
¼ � m1 þ 9m2

4

� �
þ m1

2
þ 3m2

2
¼ m1 � 3m2

4
(6.29)

m ¼ m11 m12

m21 m22

� 	
¼

m1 þ m2

4

m1 � 3m2

4
m1 � 3m2

4

m1 þ 9m2

4

2
64

3
75 (6.30)

Now let’s populate the stiffness matrix. For the k11 on-diagonal term, we need

the force required to give a unit displacement to x1 while holding x2 stationary. The
forces are shown in Fig. 6.39. The moment sum about the motionless x2 is given by:

X
M ¼ �fk11 �

2l

3
þ k1x1 � 2l

3
¼ �fk11 �

2l

3
þ k1 � 2l

3
¼ 0: (6.31)

Dividing by 2l/3 and solving for fk11 give the stiffness k11.

2
3x2m2

2
x2m1

fm22

x1 

x2 
Fig. 6.37 Force balance to

determine m22

2
3x2m2

2
x2m1

fm22

x1

x2 

fm21

Fig. 6.38 Force balance to

determine m21
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fk11 ¼ k1 (6.32)

The off-diagonal term, k12, is the force required to hold x2 motionless. See

Fig. 6.40, where the force summation yields:

X
f ¼ fk11 þ fk12 � k1x1 ¼ fk11 þ fk12 � k1 ¼ 0: (6.33)

Substituting k1 for fk11 in Eq. 6.33 enables us to determine the k12 stiffness.

fk12 ¼ 0 (6.34)

The other on-diagonal term, k22, is determined from the force required to give a

unit displacement to x2 while holding x1 fixed. The forces are displayed in Fig. 6.41.
Summing the moments about x1 gives:

X
M ¼ fk22 �

2l

3
� k2x2 � 2l

3
¼ fk22 �

2l

3
� k2 � 2l

3
¼ 0: (6.35)
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Fig. 6.41 Force balance to

determine k22
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Fig. 6.39 Force balance to

determine k11
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Fig. 6.40 Force balance to

determine k12
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We solve Eq. 6.35 for fk22 to determine k22.

fk22 ¼ k2 (6.36)

The off-diagonal term, k21, is the force required to hold x1 stationary. Summing

the forces in Fig. 6.42 and substituting for fk22 provide the desired result.

X
f ¼ fk21 þ fk22 � k2x2 ¼ fk21 þ fk22 � k2 ¼ 0

fk21 ¼ �fk22 þ k2 ¼ �k2 þ k2 ¼ 0
(6.37)

The final stiffness matrix is:

k ¼ k11 k12
k21 k22

� 	
¼ k1 0

0 k2

� 	
: (6.38)

Because the dampers appear at the same locations as the springs, the damping

matrix is:

c ¼ c11 c12
c21 c22

� 	
¼ c1 0

0 c2

� 	
: (6.39)

Chapter Summary

• In practice, it is commonly required that we have an actual dynamic system and

would like to build a model that we can use to represent its vibratory behavior.

• The first step in the “backward problem” of starting with a measurement and

developing a model is identifying the modal parameters for each of the modes

selected for fitting.

• We can use peak picking to determine the modal parameters from the real and

imaginary parts of a measured FRF.

x2 
x1

k2x2

fk22

fk21

Fig. 6.42 Force balance to

determine k21
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• For a measured direct FRF, each mode can be fit independently to find the modal

parameters.

• We assume that proportional damping holds when performing the modal fits to

the measured FRF.

• We determine the eigenvectors from the ratios of the peak heights between the

cross and direct FRFs. The imaginary parts are used to find the peak heights.

• For structures with free-free boundary conditions, rigid body modes exist.

• Nodes are points of zero deflection on the mode shapes.

• The number of direct and cross FRFs must be equal to the number of modeled

modes (degrees of freedom) in order to obtain a square modal matrix.

• Alternative lumped-parameter model types were introduced.

• A shortcut method for identifying the mass, damping, and stiffness matrices for

lumped-parameter models was described. The on-diagonal and off-diagonal

terms were treated separately.

Exercises

1. For a single-degree-of-freedom spring–mass–damper system subject to forced

harmonic vibration, the measured FRF is displayed in Figs. P6.1a and P6.1b.

Using the peak picking method, determine m (in kg), k (in N/m), and c (in N-s/m).
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Fig. P6.1a Measured FRF
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Fig. P6.1b Measured FRF (smaller frequency scale)

2. The direct and cross FRFs for the two degree of freedom system shown in

Fig. P6.2a are provided in Figs. P6.2b and P6.2c.

m1 
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x1

x2

k2
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F2e
iwt

Fig. P6.2a Two degree of freedom spring-mass-damper system under forced vibration
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Fig. P6.2b Direct FRF X2/F2
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Fig. P6.2c Cross FRF X1/F2

(a) If the modal damping ratios are zq1 ¼ 0.01 and zq2 ¼ 0.016, determine the

modal stiffness values kq1 and kq2 (N/m) by peak picking.

(b) Determine the mode shapes by peak picking.

3. An FRF measurement was completed to give the two degree of freedom

response shown in Fig. P6.3. Use the peak picking approach to identify the

modal mass, stiffness, and damping parameters for the two modes. Arrange

your results in the 2 � 2 modal matrices mq, cq, and kq.

Exercises 237



www.manaraa.com

0 200 400 600 800 1000
–2

0

2
x 10–6

R
ea

l(X
1/

F
1)

 (
m

/N
)

0 200 400 600 800 1000
–4

–2

0
x 10–6

Frequency (Hz)

Im
ag

(X
1/

F
1)

 (
m

/N
)

Fig. P6.3 Measured direct FRF for two degree of freedom system

4. An FRF measurement was completed to give the two degree of freedom

response shown in Fig. P6.4 (a limited frequency range is displayed to aid in

the peak picking activity).
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Fig. P6.4 FRF measurement for two degree of freedom system
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(a) Use the peak picking approach to identify the modal mass, stiffness, and

damping parameters for the two modes. Arrange your results in the 2�2

modal matrices mq, cq, and kq.
(b) The FRF “measurement” in part (a) was defined using the following

MATLAB® code.

kq1 = 6e6;              % N/m
kq2 = 6e6;              % N/m
omega_n1 = 475*2*pi;    % rad/s
omega_n2 = 525*2*pi;
zetaq1 = 0.04;
zetaq2 = 0.04;

omega = 0:1000*2*pi;    % rad/s
r1 = omega/omega_n1;
r2 = omega/omega_n2;

realQ1_R1 = 1/kq1*(1-r1.^2)./((1-r1.^2).^2 + (2*zetaq1*r1).^2);
imagQ1_R1 = 1/kq1*(-2*zetaq1*r1)./((1-r1.^2).^2 + (2*zetaq1*r1).^2);

realQ2_R2 = 1/kq2*(1-r2.^2)./((1-r2.^2).^2 + (2*zetaq2*r2).^2);
imagQ2_R2 = 1/kq2*(-2*zetaq2*r2)./((1-r2.^2).^2 + (2*zetaq2*r2).^2);

realX1_F1 = realQ1_R1 + realQ2_R2;
imagX1_F1 = imagQ1_R1 + imagQ2_R2;

freq = omega/2/pi;

figure(1)
subplot(211)
plot(freq, realX1_F1, 'k')
set(gca,'FontSize', 14)
axis([200 800 -2e-6 2e-6])
ylabel('Real({X_1}/{F_1}) (m/N)')
grid
subplot(212)
plot(freq, imagX1_F1, 'k')
set(gca,'FontSize', 14)
axis([200 800 -3e-6 5e-7])
xlabel('Frequency (Hz)')
ylabel('Imag({X_1}/{F_1}) (m/N)')
grid

Plot your modal fit together with the measured FRF and comment on their

agreement.

5. Figures P6.5a through P6.5e show direct, X1/F1, and cross FRFs, X2/F1 through

X5/F1, measured on a fixed-free beam. They were measured at the beam’s free

end and in 20 mm increments toward its base; see Fig. 6.36. Determine the

mode shape associated with the 200 Hz natural frequency.
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Fig. P6.5a Direct FRF X1/F1

x 10–6

0 100 200 300 400
–3.5

–3

–2.5

–2

–1.5

–1

–0.5

0

Frequency (Hz)

Im
ag

(X
2/

F
1)

 (
m

/N
)

Fig. P6.5b Cross FRF X2/F1

240 6 Model Development by Modal Analysis



www.manaraa.com

x 10–6

0 100 200 300 400
–2

–1.5

–1

–0.5

0

Frequency (Hz)

Im
ag

(X
3/

F
1)

 (
m

/N
)

Fig. P6.5c Cross FRF X3/F1
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Fig. P6.5d Cross FRF X4/F1
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Fig. P6.5e Cross FRF X5/F1

When plotting the mode shape, normalize the free end response at coordinate x1
to 1 (this is normalizing the mode shape to x1) and show the relative amplitudes

at the other coordinates x2 through x5. See Fig. P6.5f.
6. For the same fixed-free beam as Problem 5, the measurement bandwidth was

increased so that the first three modes were captured. Again, the direct, X1/F1,

and cross FRFs, X2/F1 through X5/F1, were measured. The imaginary part of the

direct FRF for the entire bandwidth is shown in Fig. P6.6a. The three natural

frequencies are 200, 550, and 1,250 Hz.
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1

0

–1

20 mm 40 60 80 100

Fig. P6.5f Coordinates for direct and cross FRF measurements

242 6 Model Development by Modal Analysis



www.manaraa.com

x 10–6

0 500 1000 1500
–5

–4

–3

–2

–1

0

Frequency (Hz)

Im
ag

(X
1/

F
1)

 (
m

/N
)

Fig. P6.6a Direct FRF X1/F1

Use Figs. P6.6b through P6.6f to identify the mode shape that corresponds to

the 1,250 Hz natural frequency. Plot your results using the same approach

described in Problem 5.
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Fig. P6.6b Direct FRF X1/F1 (mode 3 only)
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Fig. P6.6c Cross FRF X2/F1
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Fig. P6.6d Cross FRF X3/F1
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Fig. P6.6e Cross FRF X4/F1
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Fig. P6.6f Cross FRF X5/F1
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7. Find the mass matrix (in local coordinates) for the two degree of freedom

system displayed in Fig. P6.7 using the shortcut method described in Sect. 6.6 if

m1 ¼ 10 kg and m2 ¼ 12 kg.

8. Find the stiffness matrix (in local coordinates) for the two degree of freedom

system displayed in Fig. P6.7 using the shortcut method described in Sect. 6.6 if

k1 ¼ 2 � 105 N/m, k2 ¼ 2 � 105 N/m, and k3 ¼ 1 � 105 N/m.

9. Find the mass matrix (in local coordinates) for the two degree of freedom

system displayed in Fig. P6.9 using the shortcut method described in Sect. 6.6 if

m1 ¼ 10 kg and m2 ¼ 12 kg.

m1 

m2 

x1 

x2 
2
l

c1 k1 

c2 k2 

2
l

Pivot for rigid,
massless bar 

Fig. P6.9 Two degree of freedom system with a rigid, massless bar connecting the mass, m2,

to a fixed pivot

m1 m2 

x1 x2 

2
l

c1 k1 c2 k2 

k3 

2
l

Fig. P6.7 Two degree of freedom system with a rigid, massless bar connecting the two

masses, m1 and m2
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10. Find the stiffness matrix (in local coordinates) for the two degree of freedom

system displayed in Fig. P6.9 using the shortcut method described in Sect. 6.6 if

k1 ¼ 2 � 105 N/m, k2 ¼ 2 � 105 N/m, and k3 ¼ 1 � 105 N/m.
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Chapter 7

Measurement Techniques

Man is but a reed, the most feeble thing in nature, but he is a
thinking reed.

– Blaise Pascal

7.1 Frequency Response Function Measurement

In Chap. 6, we solved the “backward problem” of starting with frequency response

function (FRF) measurements and developing a model. However, we did not

describe the measurement procedure. The basic hardware required to measure

FRFs is:

• a mechanism for known force input across the desired frequency range (or

bandwidth)
• a transducer for vibration measurement, again with the required bandwidth

• a dynamic signal analyzer to record the time-domain force and vibration inputs

and convert these into the desired FRF.

A dynamic signal analyzer includes input channels for the time-domain force

and vibration signals and computes the Fourier transform of these signals to convert

them to the frequency domain. It then calculates the complex-valued ratio of

the frequency-domain vibration signal to the frequency-domain force signal; this

ratio is the FRF. A schematic setup of FRF measurement is provided in Fig. 7.1.

It includes the time-domain force and vibration (which may take the form of

displacement, x, velocity, _x, or acceleration, €x) inputs and amplifiers for each

setup. The amplifiers are used to increase the magnitude of the signals. The force

and vibration are continuous in time or analog. However, recording these signals

with the analyzer requires sampling them at small time intervals, or digitizing them.

T.L. Schmitz and K.S. Smith, Mechanical Vibrations: Modeling and Measurement,
DOI 10.1007/978-1-4614-0460-6_7, # Springer Science+Business Media, LLC 2012
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This process is completed using an analog-to-digital converter (ADC). These

digital signals are then used in the FRF calculation by the dynamic signal analyzer.

Based on the vibration input type, the FRF may be expressed as:

• receptance or compliance – the ratio of displacement to force

• mobility – the ratio of velocity to force

• accelerance or inertance – the ratio of acceleration to force.

7.2 Force Input

There are three common types of force excitation. These include:

• fixed frequency sine wave – The FRF is determined one frequency at a time.

At each frequency within the desired bandwidth, the sinusoidal force is applied,

the response to the force input is averaged over a short time interval, and the FRF

is calculated. This is referred to as a sine sweep test.
• random signal – The frequency content of the random signal may be broad-

band (white noise) or truncated to a limited range (pink noise). Averaging over a
fixed period of time is again applied, but all the frequencies within the selected

bandwidth are excited in a single test.

• impulse – A short duration impact is used to excite the structure and the

corresponding response is measured. This approach enables a broad range of

frequencies to be excited in a single, short test. Multiple tests are typically

averaged in the frequency domain to improve coherence or the correlation

between the force and vibration signals.

To generate these different forces, two common types of force input hardware

are applied:

• shaker (similar to a speaker) – This system includes a harmonically driven

armature and a base. The armature may be actuated along its axis by a magnetic

coil or hydraulic force. The magnetic coil, or electrodynamics, configurations

Fourier 
transform 

Fourier 
transform 

÷

ADC 

ADC 

Amp 

Amp 

x(t)
x(t)
x(t)

FRF 

Dynamic signal analyzer 

f (t)

Fig. 7.1 Schematic of FRF measurement setup
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can provide excitation frequencies of tens of kHz with force levels from tens

to thousands of Newton (increased force typically means a lower frequency

range). Hydraulic shakers offer high force with the potential for a static preload

(i.e., the average, or mean, force is not zero), but relatively lower frequency

ranges. In either case, the force is often applied to the structure of interest

through a stinger or a slender rod that supports axial tension and compression,

but not bending or shear. This insures that the force is applied in a single

direction only. A load cell is incorporated in the setup to measure the input

force. See Fig. 7.2. One consideration is that this load cell adds mass to the

system under test, which can alter the FRF for structures with low modal mass

values. Finally, the shaker must be isolated from the structure to prevent reaction

forces due to the shaker motion from being transmitted through the shaker base

to the structure.

• impact hammer – An impact hammer incorporates a force transducer located at a

metal, plastic, or rubber tip to measure the force input during a hammer strike.

When a hammer is used in conjunction with a vibration transducer, the mea-

surement procedure is referred to as impact testing. The energy input to the

structure is a function of the hammer mass; a larger mass provides more energy

(the linear momentum is the product of mass and velocity). Therefore, many

sizes are available. Examples are displayed in Fig. 7.3. Also, the excitation

bandwidth of the force input depends on the mass and tip stiffness. Stiffer tips

tend to excite a wider frequency range, but also spread the input energy over this

wider range. Softer tips concentrate the energy over a lower frequency range.

This is discussed further in Sect. 7.4. Hard plastic and metal tips provide higher

stiffness, while rubber tips give reduced stiffness.

In A NUTSHELL Impact testing excites the structure with many

frequencies, all at the same time. The Fourier transform provides a

way to separate them. This type of testing increased in popularity

when computers became available to handle the computational load.

Prior to that time, shaker measurements dominated.

Structure 

Load cell 

Stinger Shaker 
Fig. 7.2 Shaker setup
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7.3 Vibration Measurement

Vibration transducers are available in both noncontact and contact types. While

noncontact transducers, such as capacitance probes and laser vibrometers, are
preferred because they do not affect the system dynamics, contacting types, such

as accelerometers, are often more convenient to implement. As a compromise, low

mass accelerometers may be used to minimize the influence on the test structure.

They are attached at the location of interest using wax, adhesive, a magnet, or a

threaded stud and then removed when the testing is completed. Let’s now discuss

these different transducers in more detail.

7.3.1 Capacitance Probe

Noncontact capacitive sensors measure changes in capacitance, the ability of a

body to hold an electrical charge. When a voltage is applied to two conductors

Fig. 7.3 Example impact hammers. A 150 mm steel ruler is included in the photograph to

provide scale
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separated by some distance, an electric field is produced between them, and positive

and negative charges collect on each conductor. If the polarity of the voltage is

reversed, then the charges also reverse.

Capacitive sensors use an alternating voltage which causes the charges to contin-

ually reverse their positions. This charge motion generates an alternating electric

current which is detected by the sensor. The amount of current flow is determined by

the capacitance, which depends on the surface area of the conductors, the distance

between them, and the dielectric constant of the material between them (such as air).

The capacitance, C, is directly proportional to the surface area, A, and inversely

proportional to the distance, d, between them. A larger surface area and a smaller

distance produce a larger current. For two parallel plate conductors, the capacitance

is given by:

C ¼ ere0
A

d
; (7.1)

where er is the dielectric constant (or static relative permittivity) and e0 is the

electric constant (or vacuum permittivity). The value of the dielectric constant

is 1 in vacuum and the electric constant is 8.854187817. . . � 10�12 A�s/(V�m).

Typically, the probe is one of the conductors and the measurement target is the

other. If the sizes of the sensor and the target and dielectric constant of the material

between them are assumed to be constant, then any change in capacitance is due to a

change in the distance between the probe and the target (http://www.lionprecision.

com/tech-library/technotes/cap-0020-sensor-theory.html). A common capacitance

probe configuration is displayed in Fig. 7.4.

IN A NUTSHELL A capacitance gage requires that the target is a

conductor. If the target is not flat and parallel to the tip of the probe,

then the distance–capacitance relationship must be calibrated using

the target. The capacitance gage makes a relative measurement and

there must be a suitable mounting structure for the probe – that is, we

do not want to measure the FRF of a flexible probe mount when we are trying to

measure the FRF of the structure.

d 

Capacitance
probe 

Vibrating
target 

Sensing
area 

Fig. 7.4 Capacitance probe

configuration for vibration

measurement
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7.3.2 Laser Vibrometer

A vibrometer performs noncontact vibration measurements using the Dopper

shift1 of a laser beam’s frequency that occurs due to the motion of the target

surface. The vibrometer’s output is generally an analog voltage that is directly

proportional to the component of the target’s velocity in the laser beam direction.

A schematic of a vibrometer is shown in Fig. 7.5. In the figure, the laser head

emits a single frequency, f0. A portion of this beam is redirected using a

beam splitter and serves as a reference signal. The remainder continues to an

acousto-optic modulator (AOM) which upshifts the light frequency to f0 + f1.
When this test beam is reflected from the target surface, it is Doppler shifted by

fd, where the Doppler frequency is directly proportional to the target velocity.

The frequency-shifted measurement signal is recombined with the reference

signal and the corresponding interference signal is incident on a photodetector.

The photodetector current is then used to determine the time-dependent target

velocity.

Given the target velocity and excitation force as inputs, the dynamic signal

analyzer calculates their frequency-domain ratio, or mobility, V
F oð Þ, as the

output. To convert from mobility to receptance, X
F oð Þ, we simply divide by the

product, io. To understand this frequency-domain integration, let’s write the

harmonic displacement as x(t) ¼ Xeiot. The corresponding velocity is

_xðtÞ ¼ ioXeiot ¼ io � xðtÞ. The conversion from mobility to receptance is therefore

given by:

X

F
oð Þ ¼ X

V

V

F
¼ 1

io
V

F
: (7.2)

1You may recognize this Doppler frequency shift as the increase in the pitch (frequency) of an

approaching automobile’s horn and subsequent drop in pitch after the automobile passes you.

Laser 

Beam
splitter

AOM 

f0

Mirror 

f0

f0  +  f1 f0 + f1 ± fd

Vibrating
target 

Photodetector 

Fig. 7.5 Laser vibrometer schematic
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7.3.3 Accelerometer

Accelerometers for structural vibrationmeasurement typically use the piezoelectric2

effect to generate a voltage signal that is proportional to acceleration. A schematic is

provided in Fig. 7.6. An accelerometer includes, at minimum, a seismic mass,

piezoelectric material, and package that is connected to the structure under test.

The piezoelectric material may be quartz, tourmaline, barium titanate (BaTiO3), or

lead zirconate titanate (Pb[ZrxTi1�x]O3, 0 < x < 1, or PZT) and produces a charge

when strained by the inertial force applied by the mass during motion of the base.

The corresponding voltage is equal to this charge divided by the piezoelectric

material’s capacitance. The output voltage is proportional to the inertial force

and, therefore, the acceleration.3 As shown in Fig. 7.7, the voltage is carried to

the dynamic signal analyzer by a cable, which can have a capacitance on the same

order as the piezoelectric material. The increased capacitance decreases the voltage

for a given charge. In order to eliminate this effect (and reduce the measurement

noise), an amplifier is usually located within the accelerometer package. Example

accelerometers are pictured in Fig. 7.7.

If we think of the piezoelectric material as having finite stiffness and damping

which resist the deformation (strain) imposed by the seismic mass, then we can

represent the accelerometer as shown in Fig. 7.8. This emphasizes that the acceler-

ometer is a dynamic system itself with its own natural frequency that could affect

the measurement result. For this reason, accelerometers are designed to have high

natural frequencies (nearly 100 kHz for low mass versions).

The spring–mass–damper accelerometer representation shown in Fig. 7.9 can be

used to determine the equation of motion due to motion of the base structure to

which the accelerometer is attached. In the figure, m is the seismic mass, k and c are
the piezoelectric material’s spring stiffness and viscous damping coefficient, y is the
test structure displacement, and x is the seismic mass displacement. The free body

Piezoelectric
material 

Seismic
mass 

Structure 

Fig. 7.6 Accelerometer

schematic

2 The prefix piezo is derived from the Greek word piezein, which translates “to squeeze.”
3 This follows from Newton’s second law, F ¼ ma.
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Fig. 7.7 Example accelerometers

Piezoelectric
material 

Seismic
mass  

Structure 

Fig. 7.8 Representation of an accelerometer as a spring–mass–damper system

Rigid
connection 

Structure 

m 

c k 

y 

x 

Fig. 7.9 Schematic used to determine the equation of motion for an accelerometer attached to a

vibrating structure
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diagram for the mass is provided in Fig. 7.10. The equation of motion from the force

balance in the x direction is:

m€xþ c _x� _yð Þ þ k x� yð Þ ¼ 0: (7.3)

This is an example of a base motion as we discussed in Sect. 3.6. Let’s rewrite

Eq. 7.3 by substituting z ¼ x � y and _z ¼ _x� _y. This gives:

m€xþ c _zþ kz ¼ 0: (7.4)

If we now let €z ¼ €x� €y, then €x ¼ €zþ €y. Replacing €x and rewriting yields:

m€zþ c _zþ kz ¼ �m€y: (7.5)

If the structure is experiencing harmonic vibration, then we can write y(t) ¼
Yeiot. The corresponding acceleration of the structure is €y ¼ �o2Yeiot. If we also

let z(t) ¼ Zeiot, calculate the velocity and acceleration, and substitute in Eq. 7.5,

then we have:

�mo2 þ icoþ k
� �

Zeiot ¼ mo2Yeiot: (7.6)

Equation 7.6 can be written as a ratio of the output (relative vibration) to the

input (base structure motion):

Z

Y
¼ mo2

�mo2 þ icoþ k
¼ mo2

k � mo2ð Þ þ i coð Þ ¼
o2

k

m
� o2

� �
þ i

c

m
o

� � : (7.7)

From Chap. 2, we know that k
m ¼ on

2 and c
m ¼ 2zon. Substituting gives:

Z

Y
¼ o2

o2
n � o2

� �þ i 2zonoð Þ ¼
o2

o2
n

1� o2

o2
n

� �
þ i 2z

o
on

� � : (7.8)

m x 

mx

k (x−y) c (x−y)

Fig. 7.10 Free body diagram

for the accelerometer’s

seismic mass with a moving

base structure
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Replacing o
on

with the frequency ratio, r, results in:

Z

Y
¼ r2

1� r2ð Þ þ i 2zrð Þ : (7.9)

To eliminate the imaginary part from the denominator, we can multiply both the

numerator and denominator by (1 � r2) � i(2zr).

Z

Y
¼ r2

1� r2ð Þ þ i 2zrð Þ �
1� r2ð Þ � i 2zrð Þ
1� r2ð Þ � i 2zrð Þ ¼

r2 1� r2ð Þ � i 2zrð Þð Þ
1� r2ð Þ2 þ 2zrð Þ2 (7.10)

The real part of Eq. 7.10 is:

Z

Y
¼ r2 1� r2ð Þ

1� r2ð Þ2 þ 2zrð Þ2 (7.11)

and the imaginary part is:

Z

Y
¼ r2 �2zrð Þ

1� r2ð Þ2 þ 2zrð Þ2 : (7.12)

The magnitude is the square root of the sum of the squares of the real and

imaginary parts.

Z

Y

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2 þ Im2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ð Þ2 1� r2ð Þ2 þ r2ð Þ2 �2zrð Þ2

1� r2ð Þ2 þ 2zrð Þ2
� �2

vuuut

Z

Y

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ð Þ2 1� r2ð Þ2 þ 2zrð Þ2

� �

1� r2ð Þ2 þ 2zrð Þ2
� �2

vuuuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2ð Þ2

1� r2ð Þ2 þ 2zrð Þ2
� �

vuut

¼ r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2ð Þ2 þ 2zrð Þ2

q ð7:13Þ

Let’s replace r2 with o2

o2
n
and rearrange to obtain:

o2
n Zj j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2ð Þ2 þ 2zrð Þ2
q o2 Yj j: (7.14)

In this equation, o2|Y| represents the base structure’s acceleration. The coeffi-

cient on this acceleration, CA ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2ð Þ2þ 2zrð Þ2

p , defines the bandwidth, or the useful
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frequency range, of the accelerometer. When r ¼ 0, the coefficient is 1. Depending

on z, however, CA deviates from 1 as r increases. The result of this CA variation is

that the frequency content of the structure’s acceleration is not uniformly scaled in

the measurement signal; the scaling is frequency dependent. To avoid this effect,

the accelerometer bandwidth is limited to a frequency range where CA is nearly

constant. Figure 7.11 displays the variation in CA with r for z ¼ 0.7; the percent

error between 1 and the actual value, (1 � CA) � 100%, is also shown. We observe

that for r < 0.2, the deviation of CA from 1 is negligible (Inman 2001). This means

that the valid frequency range for an accelerometer with z ¼ 0.7 is from zero to

approximately one-fifth of its natural frequency. A higher (first) natural frequency

for an accelerometer therefore provides a wider measurement bandwidth.

Because the accelerometer produces a voltage that is proportional to accelera-

tion, we obtain the accelerance, A
F oð Þ, from the dynamic signal analyzer when it

calculates the frequency-domain ratio of the accelerometer response to the input

force. In order to determine the receptance, X
F oð Þ, we follow a similar approach to

that described in Sect. 7.3.2 for the vibrometer’s mobility data. If the harmonic

displacement is written as x(t) ¼ Xeiot, then the acceleration is described by

€xðtÞ ¼ ioð Þ2Xeiot ¼ �o2Xeiot. Therefore, the displacement and acceleration are

related by �o2. See Eq. 7.15.

X

F
oð Þ ¼ � 1

o2

A

F
(7.15)

This frequency-domain double integration is straightforward to complete, but,

like the vibrometer, the zero frequency (o ¼ 0) information is lost due to the

division by zero. For this reason, accelerometers are not well suited to measuring

quasi-static, or slowly changing, signals.
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Fig. 7.11 Equation 7.14 coefficient, CA, plotted versus the frequency ratio, r, for a damping ratio

of 0.7. The percent error between 1 and the frequency-dependent CA value is also shown
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7.4 Impact Testing

As we discussed in Sect. 7.2, impact testing can be used to determine the FRF for a

structure. In this approach, an instrumented hammer is used to excite the structure

and a transducer is used to record the resulting vibration. We will explore this

technique using time-domain simulation (Euler integration) of the displacement

due to the impulsive force input. Time-domain simulation provides an alternative to

the analytical impulse response function we discussed in Sect. 3.7.

Let’s model the case shown in Fig. 7.12 where a single degree of freedom

spring–mass–damper system is excited by a hammer impact with a triangular

force profile, f(t). The hammer initially contacts the structure at t1, the force reaches
its maximum value at t2, and the contact is lost at t3. The differential equation of

motion for this case is:

m€xþ c _xþ kx ¼ f ðtÞ: (7.16)

We can obtain a numerical solution to Eq. 7.16 using Euler integration.

As described in Sect. 2.5.2, the displacement is determined at small intervals of

time, dt, by numerical (Euler) integration from acceleration to velocity and then

velocity to displacement. We begin by solving for acceleration in Eq. 7.17:

€x ¼ f ðtÞ � c _x� kx

m
: (7.17)

The current acceleration value depends on the instantaneous values of the

time-dependent force, velocity, and displacement. For the first time step in the

simulation, the velocity and displacement are defined by the initial conditions.

m

k c

f (t)

f (t)

t
t1 t2 t3

x (t)

Fig. 7.12 Single degree of

freedom spring–mass–

damper system excited by an

impact force

260 7 Measurement Techniques



www.manaraa.com

For all subsequent time steps, these are the values from the previous time step.

Given the acceleration, the current velocity is determined using:

_x ¼ _xþ €xdt: (7.18)

In this equation, the velocity on the right hand side is the value from the previous

time step (or the initial condition for the first simulation time step) and the acceler-

ation is the value determined using Eq. 7.17. Using this velocity, the current

displacement is:

x ¼ xþ _xdt (7.19)

where the displacement on the right hand side of the equation is again the value

from the previous time step. This process is repeated over many time steps to

determine the system response. An important consideration for accurate Euler

integration is the size of the time step. If the value is too large, inaccurate results

are obtained. As a rule of thumb, it is generally acceptable to set dt to be at least

ten times smaller than the period corresponding to the highest natural frequency for

the system in question.

By the Numbers 7.1

Consider a system with a damped natural frequency of fd ¼ 1,000 Hz. The

corresponding period of vibration for free vibration is t ¼ 1
fd
¼ 1

1;000 ¼ 1� 10�3 s.

The maximum dt value for simulation is dt ¼ t
10
¼ 1� 10�4 s. Smaller values are

naturally acceptable (dividing the time constant by 50 or 100, for example), but

there is a tradeoff between improved numerical accuracy and execution time.

At some point, smaller time steps do not improve the accuracy and only serve to

increase the simulation time.

By the Numbers 7.2

Let’s use Euler integration to determine the displacement of the single degree of

freedom spring–mass–damper system displayed in Fig. 7.12 due to the triangular

force profile shown in Fig. 7.13. For the single degree of freedom spring–mass–

damper system, we will use m ¼ 1 kg, k ¼ 1 � 106 N/m, and c ¼ 80 N-s/m.

100

f (N) 

t (s) 

1×10–3 1.5×10–3
2×10–3

Fig. 7.13 By the
Numbers 7.2 – Force profile

for exciting the single degree

of freedom system pictured in

Fig. 7.12
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Therefore, the undamped natural frequency is on ¼
ffiffiffi
k
m

q
¼

ffiffiffiffiffiffiffiffiffiffi
1�106

1

q
¼ 1;000 rad/s,

the damping ratio is z ¼ c
2
ffiffiffiffi
km

p ¼ 80

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�106ð1Þ

p ¼ 0:04, the damped natural frequency

is od ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
¼ 1; 000

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:042

p
¼ 998:4 rad/s, and the corresponding

period of vibration is t ¼ 1
fd
¼ 2p

od
¼ 2p

998:4 ¼ 6:29� 10�3 s. The maximum simula-

tion step size for this vibration period is dt ¼ t
10
¼ 6:3� 10�4. We will choose a

smaller, more conservative time step of 5 � 10�5 s and carry out the simulation for

0.15 s (3,000 points).

We can complete the Euler integration described in Eqs. 7.17 through 7.19 using

a for loop in MATLAB®. For each iteration in the for loop, we must: (1) define the

time-dependent force; (2) calculate the acceleration; (3) calculate the velocity; and

(4) calculate the displacement. The code is provided in MATLAB® MOJO 7.1 and the

results are plotted in Fig. 7.14. We see that the 100 N impact force causes an

exponentially decaying oscillation with a peak value of 46.1 mm at t ¼ 0.003 s. This

lags the peak force time of 0.0015 s. The second peak height of 35.9 mm occurs at

t ¼ 0.0093 s. Using this information, we can verify the damped natural frequency

and the damping ratio.

First, the period of free vibration is the difference between the two peak times,

t ¼ 0.0093 � 0.003 ¼ 0.0063. The corresponding oscillating frequency is od ¼
2p
t ¼ 2p

0:0063 ¼ 997 rad/s. Second, we can estimate the damping ratio using the

logarithmic decrement, d. By Eq. 2.81, d ¼ ln x1
x2
¼ ln 46:1

35:9 ¼ 0:25. According to

Eq. 2.86, the damping ratio is then z ¼
ffiffiffiffiffiffiffiffiffiffiffi

d2

4p2þd2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:252

4p2þ0:252

q
¼ 0:04. These values

verify the simulation results.
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Fig. 7.14 By the Numbers 7.2 – Time-domain response of the single degree of freedom system to

the force profile in Fig. 7.13. The displacement was calculated using Euler integration
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MATLAB
®

 MOJO 7.1 
% matlab_mojo_7_1.m

clear all
close all
clc

k = 1e6;            % N/m
m = 1;              % kg
c = 80;             % N-s/m
fmax = 100;         % N

dt = 5e-5;          % s
total_time = 0.15;  % s
points = round(total_time/dt);

% Initial conditions
dx = 0;
x = 0;

% Predefine vectors used in the 'for' loop
time = zeros(points, 1);
displacement = zeros(points, 1);
force = zeros(points, 1);

for cnt = 1:points
    t = cnt*dt;

    % Define impulse
    if t < 1e-3
        f = 0;
    elseif t >= 1e-3 && t <= 1.5e-3
        f = (t-1e-3)*fmax/0.5e-3;           % N
    elseif t > 1.5e-3 && t <= 2e-3
        f = fmax - fmax/0.5e-3*(t-1.5e-3);
    else
        f = 0;
    end

    % Perform Euler integration
    ddx = (f - c*dx - k*x)/m;
    dx = dx + ddx*dt;
    x = x + dx*dt;

    % Write results to vectors
    force(cnt) = f;
    displacement(cnt) = x;
    time(cnt) = t;
end

figure(1)
subplot(211)
plot(time, force)
set(gca,'FontSize', 14)
xlim([0 0.15])
ylabel('F (N)')
subplot(212)
plot(time, displacement*1e6)
set(gca,'FontSize', 14)
xlim([0 0.15])
xlabel('t (s)')
ylabel('x (\mum)')
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Now that we have the (simulated) time response of a system due to an impact

force, we can perform the function of the dynamic signal analyzer and calculate the

FRF. To do this, we need to calculate the discrete Fourier transform of the time-

domain displacement and force signals.4 We can use the MATLAB® function fft to do

this. The following code is appended to MATLAB® MOJO7.1 in order to determine the

complex-valued force transform, F, and displacement transform, X. The FRF is

their ratio; see Fig. 7.15.

% Calculate Fourier transform of force
F = fft(force);                                     % m
freq = (0:1/(dt*points):(1-1/(2*points))/dt)';      % Hz
F = F(1:round(points/2+1), :);
freq = freq(1:round(points/2+1), :);

% Calculate Fourier transform of displacement
X = fft(displacement);                              % m
X = X(1:round(points/2+1), :);

FRF = X./F;

figure(1)
subplot(211)
plot(freq, real(FRF))
xlim([0 500])
ylim([-7e-6 9e-6])
ylabel('Real (m/N)')
subplot(212)
plot(freq, imag(FRF))
xlim([0 500])
ylim([-1.4e-5 1e-6])
xlabel('Frequency (Hz)')
ylabel('Imag (m/N)')

4 The discrete Fourier transform is applied because our inputs are sampled; they are not continuous

in time.

0 100 200 300 400 500

–5

0

5

x 10–6

x 10–6

R
ea

l (
m

/N
)

0 100 200 300 400 500

–10

–5

0

f (Hz)

Im
ag

 (
m

/N
)

Fig. 7.15 By the Numbers 7.2 – FRF for the time-domain response displayed in Fig. 7.14
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In the preceding code, we note that the fft function does not return the

corresponding frequency vector. This is defined separately as freq and depends

on both the sampling interval, dt, and the number of points, points, in the time-

domain signals. The frequency resolution for the FRF depends on the ratio

1/(dt*points). It is increased (i.e., the frequency step size is decreased) by

increasing the number of points in the signals for a fixed sampling frequency,

fs ¼ 1
dt . This is achieved by collecting data over a longer time interval.

We also note that the frequency vector is defined over an interval from zero to

half the sampling frequency. This is based on the Nyquist–Shannon sampling
theorem, which states that only signals with frequencies up to half the sampling

frequency, fs
2
, can be reconstructed from the sampled data. If a signal with

frequencies higher than fs
2
(referred to as the Nyquist frequency) is sampled, then

the data will be aliased and incorrect frequency content will be obtained in the

Fourier transform. This is demonstrated in Figs. 7.16 and 7.17. In Fig. 7.16, a sine

wave with a unit magnitude and oscillating frequency of 10 Hz is sampled at 17 Hz

(top panel) and 50 Hz (bottom panel). It is clear that the 17 Hz sampling frequency is

insufficient to capture the behavior of the 10 Hz signal. To see the effect in the

frequency domain, the discrete Fourier transform of the sampled signals is provided

in Fig. 7.17, which displays the transform magnitudes. We see that when the

10 Hz sine wave is sampled at 17 Hz, the apparent frequency is the difference

between the two frequencies, 17 � 10 ¼ 7 Hz. The signal is aliased because its

frequency exceeds the Nyquist frequency of fs
2
¼ 17

2
¼ 8:5 Hz.When the same 10 Hz

sine wave is sampled at 50 Hz, we observe the expected 10 Hz peak with a unit

magnitude. When the maximum frequency content of a signal is unknown (which is

0 0.2 0.4 0.6 0.8 1
–1

0

1

x

0 0.2 0.4 0.6 0.8 1
–1

0

1

t (s)

x

Fig. 7.16 Time-domain example of aliasing. The 10 Hz signal (dotted line) is sampled at 17 Hz

in the top panel. Because the signal frequency is greater than the Nyquist frequency

( fs
2
¼ 17

2
¼ 8:5 Hz), aliasing occurs. For a 50 Hz sampling frequency with a Nyquist frequency

of 25 Hz (bottom panel), the signal is captured accurately
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generally the case), an analog anti-aliasing filter is applied. This removes content

from the continuous signal that exceeds the Nyquist frequency prior to sampling.

In A NUTSHELL We have to sample at least twice the

frequency of the highest frequency we hope to see. If we want to see

a 500 Hz signal, then we need to sample at least 1,000 times per

second. In practice, we would like to sample much faster than that.

Once the sampling frequency is chosen, then an anti-aliasing filter is

used to remove signals beyond our measurement range.

Let’s next compare the frequency content of two hammer impacts. We stated in

Sect. 7.2 that the impulse excitation bandwidth depends on the hammer mass and

tip stiffness. We choose a stiffer tip to excite a wider frequency range and a softer

tip to concentrate the energy over a lower frequency range. Let’s model the impacts

as half-period sine waves and calculate the corresponding frequency content using

the discrete Fourier transform. Figure 7.18 shows two example impacts. Both have

a maximum value of 100 N, but the total impact durations differ by a factor of 10.

A shorter duration of 0.5 ms represents a stiff tip, and a longer duration of 5 ms

represents a softer tip. The frequency-domain force magnitudes for the two impacts

are provided in Fig. 7.19, where the signals were sampled at 50 kHz for a total of

212 ¼ 4,096 points. We see that the shorter duration impact excites a wider

frequency range, but with a lower force level than the longer impact. Note that it

is this broad frequency range excitation that makes the impact test a popular choice
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5 10 15
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Fig. 7.17 Frequency-domain example of aliasing. In the top panel, the result of sampling a 10 Hz

signal with a 17 Hz sampling frequency is shown. The apparent frequency in the aliased signal is

their difference, 17� 10 ¼ 7 Hz. The Fourier transform magnitude for a sampling frequency of

50 Hz is displayed in the bottom panel. The correct result is obtained
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for FRF measurement. With a single hammer impact, the response over a wide

range of frequencies is obtained. For the stiff tip spectrum shown in Fig. 7.19,

modes with natural frequencies of up to 2,000 Hz would be effectively excited. The

softer tip can only excite modes with natural frequencies up to about 200 Hz, but

introduces approximately ten times more force into these low frequency modes.
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Fig. 7.18 Two example force impacts
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Fig. 7.19 Discrete Fourier transforms of the two force impacts in Fig. 7.18. The top panel shows
the 0.5 ms duration impact magnitude and the bottom panel displays the 5 ms duration impact

magnitude
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To conclude this section, let’s observe the results of an impact test completed on

the beam experimental platform (BEP) that was introduced in Sect. 2.6. For these

measurements, a low mass accelerometer was attached to the free end of the

clamped rod and it was excited using a small impact hammer as shown in

Fig. 7.20. The extended length of the steel rod was 130 mm. The direct FRF

obtained by exciting and measuring at the rod’s free end is provided in Fig. 7.21.

Fig. 7.20 Impact testing setup for the BEP
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Fig. 7.21 Direct FRF measured at the free end of the BEP’s clamped rod
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We observe a single mode with a natural frequency of 463.9 Hz within the 1,000 Hz

measurement bandwidth. Therefore, if the vibration behavior only up to 1,000 Hz is

of interest, then the BEP could be modeled as a single degree of freedom system.

(As discussed in the next section, other modes actually exist at higher frequencies

outside the measurement bandwidth.) The low frequency behavior observed

in Fig. 7.21 is due to the double integration of the accelerance as described in

Sect. 7.3.3.

7.5 Modal Truncation

Because FRF measurements always have a finite frequency range and elastic

bodies possess an infinite number of degrees of freedom (with increasing natural

frequencies), there are necessarily modes that exist outside the measurement range.

While all the modes affect the measurement, when we identify a model of the

system using peak picking, we only consider the effects of the individual modes

within the measurement bandwidth that we selected for fitting. Omitting the higher

frequency modes affects the accuracy of the modal fit, particularly the real part of

the FRF. This is referred to as modal truncation. Equations 7.20 and 7.21, which

describe the real and imaginary parts of a single degree of freedom FRF, are

included here to demonstrate the effect.

Re
X

F

� �
¼ 1

k

1� r2

1� r2ð Þ2 þ 2zrð Þ2
 !

(7.20)

Im
X

F

� �
¼ 1

k

�2zr

1� r2ð Þ2 þ 2zrð Þ2
 !

(7.21)

We see that when the frequency ratio r ¼ o
on

is large, or the forcing frequency o
is very high and outside the measurement range, the denominator for the right

parenthetical terms in these two equations becomes very large and the response

approaches zero. However, when r is very small, the parenthetical term in the real

part approaches a value of 1, and the parenthetical term in the imaginary part

approaches zero. Therefore, the value of the real part approaches 1
k as r approaches

zero.5 Neglecting the modes beyond the measurement bandwidth and, therefore,

the associated 1
k contribution for each leads to errors in the vertical location of the

modal fit’s real part. This is demonstrated in By the Numbers 7.3.

5 This 1
k term can be referred to as the DC compliance.
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By the Numbers 7.3

An example FRF is provided in Fig. 7.22. We will presume that the measurement

bandwidth was 2,000 Hz, although a 5,000 Hz frequency range is shown for the

purposes of this demonstration. Within the 2,000 Hz range, two modes are visible,

and peak picking can be applied to determine the associated modal parameters.

Using the values from the figure, the modal stiffness, mass, and damping matrix

terms may be determined as shown in Sect. 6.2.

zq1 ¼
393� 356

2 � 375 ¼ 0:049 zq2 ¼
1; 122� 1; 078

2 � 1100 ¼ 0:020

kq1 ¼ �1

2 � 0:049 � �6:74� 10�7
� � ¼ 1:50� 107 N/m

kq2 ¼ �1

2 � 0:020 � �6:26� 10�6
� � ¼ 3:99� 106 N/m

mq1 ¼ 1:50� 107

375 � 2pð Þ2 ¼ 2:70 kg mq2 ¼ 3:99� 106

1; 100 � 2pð Þ2 ¼ 0:084 kg

cq1 ¼ 2 � 0:049
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:50� 107 � 2:70

p
¼ 624N-s/m
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Fig. 7.22 By the Numbers 7.3 – measured direct FRF. The peak picking values are listed within

the 2,000 Hz measurement bandwidth. A 5,000 Hz frequency range is provided to show the

truncated 4,000 Hz mode

270 7 Measurement Techniques



www.manaraa.com

cq2 ¼ 2 � 0:020
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:99� 106 � 0:084

p
¼ 23:2N-s/m

The fit to the measured direct FRF is determined by summing the two

contributions in modal coordinates using:

X

F
¼ Q1

R1

þ Q2

R2

¼ 1

kq1

1� r1
2ð Þ � i 2zq1r1

� �
1� r12ð Þ2 þ 2zq1r1

� �2
 !

þ 1

kq2

1� r2
2ð Þ � i 2zq2r2

� �
1� r22ð Þ2 þ 2zq2r2

� �2
 !

;

where r1 ¼ f
375

and r2 ¼ f
1;100 and f is given in Hz. It is seen in Fig. 7.23 that,

although the shape of the two modes within the 2,000 Hz bandwidth are correctly

identified, there is a noticeable offset in the real part of the fit. It appears too stiff

(i.e., it is located below the measured FRF) because the DC compliance due to

the 4,000 Hz mode has not been considered. Because this mode is outside the

measurement frequency range, it is not possible to fit the mode and determine

the appropriate modal parameters. However, given the visible offset in Fig. 7.23,

the combined contributions of truncated modes can be included by adding an

effective DC compliance term to the fit. Specifically, for this example, the fit

could be rewritten as:

X

F
¼ 1

k
þ Q1

R1

þ Q2

R2

;

where the
Qj

Rj
terms (j ¼ 1, 2) are obtained through peak picking as described

previously and the 1
k value is selected to move the fit to a vertical overlap with
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Fig. 7.23 By the Numbers 7.3 – result of modal fitting. An offset in the real part of the fit (dotted

line) is observed because the DC compliance of the 4,000 Hz mode is not included
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the measured FRF. If a value of k ¼ 3� 106 N/m is applied here, the fit is improved

and the result shown in Fig. 7.24 is obtained. Note that this stiffness value is equal

to the modal stiffness of the 4,000 Hz mode shown in Fig. 7.22 (for completeness,

the modal damping ratio for this mode is 0.07). The code used to produce

Figs. 7.22–7.24 is provided in MATLAB® MOJO 7.2.

MATLAB
®

 MOJO 7.2 
% matlab_mojo_7_2.m

clc
clear all
close all

% Define modal parameters for the "measured" FRF
fn1 = 375;          % Hz
wn1 = fn1*2*pi;     % rad/s
zetaq1 = 0.05;
kq1 = 1.5e7;        % N/m

fn2 = 1100;         % Hz
wn2 = fn2*2*pi;     % rad/s
zetaq2 = 0.02;
kq2 = 4e6;          % N/m

fn3 = 4000;         % Hz
wn3 = fn3*2*pi;     % rad/s
zetaq3 = 0.07;
kq3 = 3e6;          % N/m

% Define the measured FRF
w = (0:0.2:5000)'*2*pi;     % frequency, rad/s
r1 = w/wn1;
r2 = w/wn2;
r3 = w/wn3;
FRF = 1/kq1*((1-r1.^2) - i*(2*zetaq1*r1))./((1-r1.^2).^2 + (2*zetaq1*r1).^2) 
+ 1/kq2*((1-r2.^2) - i*(2*zetaq2*r2))./((1-r2.^2).^2 + (2*zetaq2*r2).^2) + 
1/kq3*((1-r3.^2) - i*(2*zetaq3*r3))./((1-r3.^2).^2 + (2*zetaq3*r3).^2);

figure(1)
subplot(211)
plot(w/2/pi, real(FRF), 'k')
ylim([-3.5e-6 4.5e-6])
set(gca,'FontSize', 14)
ylabel('Real (m/N)')
subplot(212)
plot(w/2/pi, imag(FRF), 'k')
ylim([-7.5e-6 7.5e-7])
set(gca,'FontSize', 14)
xlabel('Frequency (Hz)')
ylabel('Imag (m/N)')

figure(2)
subplot(211)
plot(w/2/pi, real(FRF), 'k')
axis([0 2000 -3.5e-6 4.5e-6])
set(gca,'FontSize', 14)
ylabel('Real (m/N)')
hold on
subplot(212)
plot(w/2/pi, imag(FRF), 'k')
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axis([0 2000 -7.5e-6 7.5e-7])
set(gca,'FontSize', 14)
xlabel('Frequency (Hz)')
ylabel('Imag (m/N)')
hold on

figure(3)
subplot(211)
plot(w/2/pi, real(FRF), 'k')
axis([0 2000 -3.5e-6 4.5e-6])
set(gca,'FontSize', 14)
ylabel('Real (m/N)')
hold on
subplot(212)
plot(w/2/pi, imag(FRF), 'k')
axis([0 2000 -7.5e-6 7.5e-7])
set(gca,'FontSize', 14)
xlabel('Frequency (Hz)')
ylabel('Imag (m/N)')
hold on

% Perform fit
fn1 = 375;          % Hz
wn1 = fn1*2*pi;     % rad/s
zetaq1 = (393 - 356)*2*pi/(2*wn1);
kq1 = 1/(2*zetaq1*6.74e-7);

fn2 = 1100;         % Hz
wn2 = fn2*2*pi;     % rad/s
zetaq2 = (1122 - 1078)*2*pi/(2*wn2);
kq2 = 1/(2*zetaq2*6.26e-6);

r1 = w/wn1;
r2 = w/wn2;
FRF1 = 1/kq1*((1-r1.^2) - 1i*(2*zetaq1*r1))./((1-r1.^2).^2 + 
(2*zetaq1*r1).^2);  % mode 1
FRF2 = 1/kq2*((1-r2.^2) - 1i*(2*zetaq2*r2))./((1-r2.^2).^2 + 
(2*zetaq2*r2).^2);  % mode 2
FRF = FRF1 + FRF2;  % modal fit

figure(2)
subplot(211)
plot(w/2/pi, real(FRF), 'k:')
subplot(212)
plot(w/2/pi, imag(FRF), 'k:')

% Add correction for modal truncation
k = 3e6;            % N/m
FRF = 1/k + FRF1 + FRF2;  % new modal fit

figure(3)
subplot(211)
plot(w/2/pi, real(FRF), 'k:')
subplot(212)
plot(w/2/pi, imag(FRF), 'k:')
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Chapter Summary

• FRF measurement requires a mechanism for force input, a transducer to measure

the vibration, and a dynamic signal analyzer to compute the vibration to force

ratio of the Fourier-transformed signals.

• The FRF may take the form of receptance (displacement), mobility (velocity), or

accelerance (acceleration) depending on the vibration measurement technique.

• Force input types include fixed frequency sine waves, random noise, and

impulses. These forces can be produced using a shaker or impact hammer.

• Example vibration transducers include capacitance probes, laser vibrometers,

and accelerometers. The latter is a contact-type measurement.

• The response of an accelerometer to a structure’s motion is an example of base

motion.

• Accelerance and mobility can be converted to receptance in the frequency

domain using the measurement frequency vector.

• Euler (numerical) integration can be used to solve the differential equation of

motion for arbitrary force inputs, including the force impulse in impact testing.

• Care must be exercised in sampling continuous signals to avoid aliasing.

• In modal truncation, modes that exist outside the measurement range affect the

accuracy of the modal fit to the measured FRF.

0 500 1000 1500 2000

−2

0

2

4
x 10−6

x 10−6

R
ea

l (
m

/N
)

0 500 1000 1500 2000

−6

−4

−2

0

Frequency (Hz)

Im
ag

 (
m

/N
)

Fig. 7.24 By the Numbers 7.3 – result of modal fitting with the addition of a DC compliance term

to compensate for the truncated mode
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Exercises

1. Complete the following statements.

(a) Receptance is the frequency-domain ratio of _____________ to

____________.

(b) Mobility is the frequency-domain ratio of _____________ to

____________.

(c) Accelerance is the frequency-domain ratio of _____________ to

____________.

2. Find three commercial suppliers of impact hammers for modal testing.

3. Find three commercial suppliers of dynamic signal analyzers for modal testing.

4. Digital data acquisition is to be used to record vibration signals for a particular

system. If the highest anticipated frequency in the measurements is 5,000 Hz,

select the minimum sampling frequency.

5. An impact test was completed using an instrumented hammer to excite a

structure and an accelerometer to measure the vibration response.

(a) Show how to convert the acceleration-to-force frequency response function

(i.e., accelerance) that was obtained to a displacement-to-force frequency

response function (i.e., receptance).

(b) What information is lost in this conversion?

6. As described in Sects. 7.2 and 7.4, FRFs are often measured using impact

testing. In this approach, an instrumented hammer is used to excite the structure

and a transducer is used to record the resulting vibration.

Use Euler integration to determine the displacement due to the triangular

impulsive force profile shown in Fig. P7.6. The force excites a single degree

of freedom spring–mass–damper system with m ¼ 2 kg, k ¼ 1.1 � 106 N/m,

and c ¼ 83 N-s/m. For the Euler integration, use a time step of 1 � 10�5 s and

carry out your simulation for 0.2 s (20,000 points).

t(s) 

125

f (N) 

0.75×10–3 1.5×10–3

Fig. P7.6 Impulsive force

profile for impact test
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(a) Plot both the force (N) versus time (s) and displacement (mm) versus time.

(b) Determine the maximum displacement (in mm) and the time at which this

displacement occurs.

7. For a particular measurement application, an accelerometer must be selected

with a bandwidth or useful frequency range of 5,000 Hz. If the allowable

deviation in the scaling coefficient CA ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2ð Þ2þ 2zrð Þ2

p is �1% and the

damping ratio is known to be 0.65, determine the minimum required for the

natural frequency of the accelerometer.

8. A single degree of freedom spring–mass–damper system which is initially at

rest at its equilibrium position is excited by an impulsive force with a magni-

tude of 250 N over a time interval of 0.5 ms; see Fig. P7.8. If the mass is 3 kg,

the stiffness is 3� 106 N/m, and the viscous damping coefficient is 120 N-s/m,

complete the following.

(a) Determine xðtÞ using Eq. 3.44. Plot the response (in mm) over a time period

of 0.3 s with a step size of 1 � 10�4 s in the time vector.

(b) Determine xðtÞ usingEuler integration.Use a time step of 1 � 10�4 s and carry

out your simulation for 0.3 s (30,000 points). Plot xðtÞ (in mm) versus time.

9. Determine the FRF for the system described in Problem 8 using Euler integra-

tion to calculate the time-domain displacement due to the impulsive input

force. To increase the FRF frequency resolution, use a total simulation time

of 1 s. Given the time-domain displacement and force vectors, use the MATLAB®

function fft to calculate the complex-valued force transform, F, and displace-

ment transform, X. Plot the real and imaginary parts (in m/N) of their ratio,

X/F, versus frequency (in Hz). Use axis limits of axis([0 500 -5e-6

5e-6]) for the real plot and axis limits of axis([0 500 -1e-5 1e-6]) for

the imaginary plot.

0.5×10–3

m

k c

f (t)

t(s) 

f (N) 

250

x(t)

Fig. P7.8 Spring–mass–damper

system excited

by an impulsive force
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10. The existence of modes with frequencies higher than the measurement

bandwidth leads to an effect referred to as _______________ when performing

a modal fit to the measured FRF.
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Chapter 8

Continuous Beam Modeling

Continuity in everything is unpleasant.

– Blaise Pascal

8.1 Beam Bending

In Chaps. 1 through 5 we discussed the solution of discrete, lumped-parameter

models. For multiple degree of freedom systems, we employed modal analysis to

enable us to transform the coupled equations of motion in local (model) coordinates

into modal coordinates. In this coordinate frame, the equations of motion were

uncoupled and we could apply single degree of freedom solution techniques.

In Chap. 6 we shifted our attention to the “backwards problem,” which is represen-

tative of a common task for vibration engineers. In this problem, we begin with

measurements of an existing structure and use this information to develop a model.

We again used discrete models to describe the system behavior.

An alternative to lumped-parameter models is continuous models. In this case,

the mass is distributed throughout the structure, rather than localized at the model

coordinates. This modeling approach can be very effective and can offer good

accuracy. As an example, the modal truncation effects we discussed in Sect. 7.5 are

non-existent when a continuous model that includes the effects of all modes is

implemented.

T.L. Schmitz and K.S. Smith, Mechanical Vibrations: Modeling and Measurement,
DOI 10.1007/978-1-4614-0460-6_8, # Springer Science+Business Media, LLC 2012
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IN A NUTSHELL Continuous solutions can be derived for

many simple geometries. These solutions offer insight into the way

that vibrating systems behave and describe the distributed mass,

stiffness, and damping elements that are often encountered.

Continuous models become complicated for any but the simplest

systems, but it is useful to understand the parallels between the continuous and the

discrete parameter models. In addition, the continuous models form the basis for

deriving finite element representations, a useful technique for discretizing

continuous systems.

To begin this discussion, let’s consider the bending of beams using Euler–Bernoulli
beam theory and see how we can expand the analysis to derive the vibration response.

The fundamental relationship between the transverse deflection, y, and a load per

unit length, q, applied to a beam1 with constant cross section and material properties

is provided in Eq. 8.1. In this equation E is the elastic modulus, I is the second

moment of area, and x is the (continuous) position along the beam. Figure 8.1

displays the x and y coordinate axes for a rectangular beam. In this case, the second

moment of area is I ¼ ab3 12= .

q

EI
¼ d 4y

dx4
(8.1)

To determine the static (non-vibratory) deflection of a continuous beam under a

selected loading condition, we integrate Eq. 8.1 four successive times. Let’s apply

the loading condition shown in Fig. 8.2, where a simply supported2 beam with

length, l, is loaded by a force per unit length, w. Due to symmetry, the reaction

force, wl 2= , is the same at both ends. Equation 8.1 can be rewritten as shown in

Eq. 8.2 for this case.

1 A beam can be described as a structure where one dimension is much larger than the other two

dimensions.
2 A simply supported beam is pinned at one end and has a rolling support at the other.

x 

y 

a 

b 

Fig. 8.1 Coordinate

definitions for continuous

beam transverse deflection.

The deflection, y, depends on
the location along the beam

axis, x
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q

EI
¼ d 4y

dx4
¼ �w

EI
: (8.2)

Integrating Eq. 8.2 gives Eq. 8.3, where C1 is the integration constant and V is

the position-dependent shear force acting on the beam.

V

EI
¼ d3y

dx3
¼ �w

EI
xþ C1 (8.3)

Integrating a second time yields the moment,M, equation shown in Eq. 8.4. Now

there are two integration constants.

M

EI
¼ d2y

dx2
¼ �w2

2EI
xþ C1xþ C2 (8.4)

The third integration gives the beam slope, y. See Eq. 8.5.

y ¼ dy

dx
¼ �w3

6EI
xþ C1x

2

2
þ C2xþ C3 (8.5)

Finally, the deflection equation is obtained by a fourth integration as shown

in Eq. 8.6.

y ¼ �w4

24EI
xþ C1x

3

6
þ C2x

2

2
þ C3xþ C4 (8.6)

In order to obtain the deflection profile from Eq. 8.6, we must determine the

four integration constants. We identify these using the beam’s boundary conditions.
For the simply supported beam in Fig. 8.2, the following boundary conditions

apply.

1. The shear force at the left end (x ¼ 0) is equal to the reaction force. We can

express this relationship as:

V

EI

����
x¼0

¼ wl

2EI
: (8.7)

2. The ends points of the beam are free to rotate, so the moment at the left

end is zero.

M

EI

����
x¼0

¼ 0 (8.8)
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3. The slope at the beam’s midpoint is zero due to symmetry.

yjx¼ l
2
¼ 0 (8.9)

4. The deflection at the left end is zero.

yjx¼0 ¼ 0 (8.10)

Substitution of Eqs. 8.7 through 8.10 into Eqs. 8.3 through 8.6 and simultaneous

solution yields the following four relationships for the beam in Fig. 8.2.

V

EI
¼ w

EI

l

2
� x

� �
(8.11)

M

EI
¼ w

2EI
lx� x2
� �

(8.12)

y ¼ w

24EI
6lx2 � 4x3 � l3
� �

(8.13)

y ¼ w

24EI
2lx3 � l3x� x4
� �

(8.14)

When implementing Euler–Bernoulli beam theory, there are two underlying

assumptions: (1) shear deformations are negligible; and (2) planar cross sections

remain planar and normal to the beam axis during deformation. These assumptions

limit the accuracy of the model when the beam is not long and slender (approxi-

mately ten times longer than the largest cross-sectional dimension).

By the Numbers 8.1

Let’s determine the shear force, moment, slope, and deflection diagrams for a steel,

10 mm (0.01 m) square cross section, simply supported beam with a length

w 

x 

q 

l 

2
wl

2
wl

Fig. 8.2 Simply supported

beam loaded by the force per

unit length, w
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of 200 mm (0.2 m). The loading conditions follow Fig. 8.2 with w ¼ 100 N/m.

We will assume a steel modulus of 200 GPa. The area moment of inertia is

determined for the square cross section using:

I ¼ 0:01ð Þ4
12

¼ 8:3� 10�10 m4:

The results are shown in Fig. 8.3. We see that the maximum deflection of

12.5 mm occurs at the beam midpoint. The code used to produce Fig. 8.3 is provided

in MATLAB® MOJO .8.1

MATLAB
®

 MOJO 8.1 
% matlab_mojo_8_1.m

clc
clear all
close all

% Define beam parameters
s = 10e-3;          % m
E = 200e9;          % N/m^2
I = s^4/12;         % m^4
w = 100;            % N/m
l = 200e-3;         % m
x = 0:1e-3:l;       % m

% Shear force
V = w*(l/2 - x);
% Moment
M = w*(l*x - x.^2);
% Slope
theta = w/(24*E*I)*(6*l*x.^2 - 4*x.^3 - l^3);
% Deflection
y = w/(24*E*I)*(2*l*x.^3 - l^3*x - x.^4);

figure(1)
subplot(411)
plot(x*1e3, V, 'k')
set(gca,'FontSize', 14)
ylabel('V (N)')
subplot(412)
plot(x*1e3, M, 'k')
set(gca,'FontSize', 14)
ylim([0 1.2])
ylabel('M (N/m)')
subplot(413)
plot(x*1e3, theta, 'k')
set(gca,'FontSize', 14)
ylim([-2.5e-4 2.5e-4])
ylabel('\theta (rad)')
subplot(414)

plot(x*1e3, y*1e6, 'k')
set(gca,'FontSize', 14)
ylim([-13 0])
xlabel('x (mm)')
ylabel('y (\mum)')

8.1 Beam Bending 283



www.manaraa.com

8.2 Transverse Vibration Equation of Motion

While the analysis in Sect. 8.1 is useful, it only gives the static solution. It does not

describe the dynamic, or vibratory, behavior of a beam. For the beam vibration, we

need to determine the time-dependent deflection. We will now build on the previous

analysis to determine the required differential equation of motion for the beam. Let

us begin with Fig. 8.4, which shows the forces and moments acting on a section of a

vibrating Euler–Bernoulli beam with an infinitesimal length, @x.
According to Newton’s second law, the sum of the forces in the y direction is

equal to the product of the section mass and acceleration,
P

Fy ¼ m @2y
@t2 . See

Eq. 8.15, where the mass is rewritten as the product of the density, r, cross-sectional
area, A, and section length, @x.

q@xþ VðxÞ � V xþ @xð Þ ¼ rA@x
@2y

@t2
(8.15)

We can rewrite Eq. 8.15 by substituting @V ¼ V xþ @xð Þ � VðxÞ and dividing

each term by @x. The result is provided in Eq. 8.16.

q� @V

@x
¼ rA

@2y

@t2
(8.16)
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Fig. 8.3 By the Numbers 8.1 – shear force, moment, slope, and deflection diagrams for the simply

supported steel beam subjected to self-loading
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From Eq. 8.3, the shear force is V ¼ EI @
3y

@x3 . Calculating the partial derivative

with respect to x gives:

@V

@x
¼ EI

@ 4y

@x4
: (8.17)

Substituting Eq. 8.17 into 8.16 gives the differential equation of motion for the

transverse vibration of a uniform cross section Euler–Bernoulli beam.

rA
@2y

@t2
þ EI

@ 4y

@x4
¼ q (8.18)

For free vibration, the external transverse load, q, is zero, so we can write:

rA
@2y

@t2
þ EI

@ 4y

@x4
¼ 0: (8.19)

8.3 Frequency Response Function for Transverse Vibration

Our next task is to determine the beam’s frequency response function using

Eq. 8.19. A general solution to this equation is:

y x; tð Þ ¼ YðxÞ sin otð Þ; (8.20)

where YðxÞ is a function that describes the position-dependent vibration behavior

and o is frequency (Bishop and Johnson 1960). Let’s calculate the required partial

derivatives of Eq. 8.20 that appear in Eq. 8.19.

@2y

@t2
¼ YðxÞ �o2

� �
sin otð Þ (8.21)

@ 4y

@x4
¼ @ 4Y

@x4
sin otð Þ (8.22)

x

y q

∂x

V (x)

V (x + ∂x)

M (x + ∂x)

M(x)

Fig. 8.4 Forces and moments

acting on a small section of a

vibrating Euler–Bernoulli

beam
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Substituting Eqs. 8.21 and 8.22 into Eq. 8.19 gives:

rA �o2Y
� �þ EI

@ 4Y

@x4

� �
sin otð Þ ¼ 0: (8.23)

Rewriting Eq. 8.23 yields:

@ 4Y

@x4
� o2 rA

EI
Y ¼ 0: (8.24)

Letting l4 ¼ o2 rA
EI , we now have:

@ 4Y

@x4
� l4Y ¼ 0: (8.25)

The time-dependence of Eq. 8.19 has been eliminated in Eq. 8.25. In addition,

frequency has been introduced through the l4 term. A general solution to this new

equation is:

YðxÞ ¼ A cos lxð Þ þ B sin lxð Þ þ C cosh lxð Þ þ D sinh lxð Þ: (8.26)

To determine the coefficients A, B, C, and D, we must apply the beam’s

boundary conditions. Given these coefficients, the continuous beam’s direct and

cross FRFs can be determined. In the next two sections, we will derive the FRFs

for beams with fixed-free (cantilever) and free-free boundary conditions.

IN A NUTSHELL The sinh and cosh functions are the hyperbolic

sine and hyperbolic cosine, respectively. These functions are not

often encountered by most engineers, but they are analogs of the

more familiar sine and cosine functions and they frequently appear

in continuous structure solutions. They are defined by sinhðxÞ ¼ 1
2
�

ex � e�xð Þ and coshðxÞ ¼ 1
2
ex þ e�xð Þ.

8.3.1 Fixed-Free Beam

Figure 8.5 shows a fixed-free beam. In order to determine the FRF at the free end,

coordinate 1, we need to apply a force, F1 ¼ F sin otð Þ, at this location. Note that

the force and vibration, y x; tð Þ ¼ YðxÞ sin otð Þ, expressions both have the same

sinusoidal form. The cantilever base coordinate is labeled as 2.

We need to identify four boundary conditions for this beam in order to determine

the coefficients A though D in Eq. 8.26. For the free end, where x ¼ l, no moment is

supported (it is free to rotate), so we can modify Eq. 8.4 to be:

286 8 Continuous Beam Modeling



www.manaraa.com

M

EI

����
x¼l

¼ d2y

dx2

����
x¼l

¼ 0: (8.27)

We know that the shear force at the free end is F1 ¼ F sin otð Þ so we can define

the corresponding boundary condition (see Eq. 8.3).

V

EI

����
x¼l

¼ d3y

dx3

����
x¼l

¼ � F

EI
sin otð Þ (8.28)

At the fixed end, x ¼ 0, both the deflection and the slope are zero. You can

visualize this by considering the shape of a swimming pool’s diving board when

you stand at the free end.

dy

dx

����
x¼0

¼ 0 (8.29)

yjx¼0 ¼ 0 (8.30)

Let’snow use Eqs. 8.27 through 8.30 to determine the coefficients in Eq. 8.26. At

x ¼ 0, we obtain:

Yð0Þ ¼ A cosð0Þ þ B sinð0Þ þ C coshð0Þ þ D sinhð0Þ ¼ Aþ C ¼ 0 (8.31)

and

@Y

@x
ð0Þ ¼ l �A sinð0Þ þ B cosð0Þ þ C sinhð0Þ þ D coshð0Þð Þ ¼ l Bþ Dð Þ ¼ 0:

(8.32)

These two equations specify that A ¼ �C and B ¼ �D. At x ¼ l, applying the

boundary conditions gives:

@2Y

@x2
ðlÞ ¼ l2 �A cos llð Þ � B sin llð Þ þ C cosh llð Þ þ D sinh llð Þð Þ ¼ 0 (8.33)

F1= Fsin(wt)

x 

y 

1 2 

l 

Fig. 8.5 Fixed-free beam

model with a harmonic force

applied at the free end
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and

@3Y

@x3
ðlÞ ¼ l3 A sin llð Þ � B cos llð Þ þ C sinh llð Þ þ D cosh llð Þð Þ ¼ � F

EI
sin otð Þ:

(8.34)

Using the relationships determined from Eqs. 8.31 and 8.32, we can substitute

for A and B in Eqs. 8.33 and 8.34 to obtain a system of two equations with two

unknowns.

C cos llð Þ þ D sin llð Þ þ C cosh llð Þ þ D sinh llð Þ ¼ 0 (8.35)

� C sin llð Þ þ D cos llð Þ þ C sinh llð Þ þ D cosh llð Þ ¼ � F

l3EI
sin otð Þ (8.36)

Combining terms in these two equations yields:

C cos llð Þ þ cosh llð Þð Þ þ D sin llð Þ þ sinh llð Þð Þ ¼ 0 (8.37)

and

C � sin llð Þ þ sinh llð Þð Þ þ D cos llð Þ þ cosh llð Þð Þ ¼ � F

l3EI
sin otð Þ: (8.38)

Let’s arrange Eqs. 8.37 and 8.38 into matrix form.

cos llð Þ þ cosh llð Þ sin llð Þ þ sinh llð Þ
� sin llð Þ þ sinh llð Þ cos llð Þ þ cosh llð Þ
� �

C
D

	 

¼

0

� F

l3EI
sin otð Þ

( )
(8.39)

There are a number of solution methods available for Eq. 8.39. We could apply

matrix inversion, for example. However, let’s use Cramer’s rule to determine C and

D (Chapra and Canale 1985). To describe this technique, let’s rewrite Eq. 8.39 in

generic form:

a11 a12
a21 a22

� �
x1
x2

	 

¼ b1

b2

	 

: (8.40)

According to Cramer’s rule, we determine x1 and x2 using ratios of determinants

as shown in Eqs. 8.41 and 8.42.

x1 ¼
b1 a12
b2 a22

����
����

a11 a12
a21 a22

����
����
¼ b1a22 � b2a12

a11a22 � a21a12
(8.41)

288 8 Continuous Beam Modeling



www.manaraa.com

x2 ¼
a11 b1
a21 b2

����
����

a11 a12
a21 a22

����
����
¼ a11b2 � a21b1

a11a22 � a21a12
(8.42)

Using Eqs. 8.39 and 8.41, we can determine C.

C ¼

0 sin llð Þ þ sinh llð Þ
� F

l3EI
sin otð Þ cos llð Þ þ cosh llð Þ

�����
�����

cos llð Þ þ cosh llð Þ sin llð Þ þ sinh llð Þ
� sin llð Þ þ sinh llð Þ cos llð Þ þ cosh llð Þ
����

����
(8.43)

C ¼
F

l3EI
sin llð Þ þ sinh llð Þð Þ

cos llð Þ þ cosh llð Þð Þ2 � � sin llð Þ þ sinh llð Þð Þ sin llð Þ þ sinh llð Þð Þ sin otð Þ

(8.44)

C ¼ F sin llð Þ þ sinh llð Þð Þ
2l3EI 1þ cos llð Þ cosh llð Þð Þ sin otð Þ (8.45)

Using Eqs. 8.39 and 8.42, we can find D.

D ¼

cos llð Þ þ cosh llð Þ 0

� sin llð Þ þ sinh llð Þ � F

l3EI
sin otð Þ

�����
�����

cos llð Þ þ cosh llð Þ sin llð Þ þ sinh llð Þ
� sin llð Þ þ sinh llð Þ cos llð Þ þ cosh llð Þ
����

����
(8.46)

D¼
� F

l3EI
cos llð Þþcosh llð Þð Þ

cos llð Þþcosh llð Þð Þ2� �sin llð Þþsinh llð Þð Þ sin llð Þþsinh llð Þð Þ sin otð Þ (8.47)

D ¼ � F cos llð Þ þ cosh llð Þð Þ
2l3EI 1þ cos llð Þ cosh llð Þð Þ sin otð Þ (8.48)

To find Y1 due to the harmonic force F1 (see Fig. 8.5), we substitute for A, B, C,
and D and let x ¼ l in Eq. 8.26.

Y1 ¼ A cos llð Þ þ B sin llð Þ þ C cosh llð Þ þ D sinh llð Þ (8.49)

Y1 ¼ �C cos llð Þ � D sin llð Þ þ C cosh llð Þ þ D sinh llð Þ (8.50)

8.3 Frequency Response Function for Transverse Vibration 289



www.manaraa.com

Y1 ¼ C � cos llð Þ þ cosh llð Þð Þ þ D � sin llð Þ þ sinh llð Þð Þ (8.51)

Y1 ¼ F sin llð Þ þ sinh llð Þð Þ
2l3EI 1þ cos llð Þ cosh llð Þð Þ sin otð Þ � cos llð Þ þ cosh llð Þð Þ

� F cos llð Þ þ cosh llð Þð Þ
2l3EI 1þ cos llð Þ cosh llð Þð Þ sin otð Þ � sin llð Þ þ sinh llð Þð Þ (8.52)

Expanding and simplifying Eq. 8.52 gives:

Y1 ¼ sin llð Þ cosh llð Þ � cos llð Þ sinh llð Þ
l3EI 1þ cos llð Þ cosh llð Þð Þ F sin otð Þ: (8.53)

Because F1 ¼ F sin otð Þ, the direct FRF at the beam’s free end is:

Y1
F1

¼ sin llð Þ cosh llð Þ � cos llð Þ sinh llð Þ
l3EI 1þ cos llð Þ cosh llð Þð Þ ; (8.54)

where l4 ¼ o2rA EI= . This gives the frequency dependence.

What about the cross FRF, Y2 F1= , for the fixed-free beam? This is the response

at the base due to the harmonic force at the free end. Our intuition should tell us that

the cross FRF is zero since, by definition, the base does not move regardless of the

force input. Let’s verify this using Eq. 8.26. At x ¼ 0 we have:

Y2 ¼ A cosð0Þ þ B sinð0Þ þ C coshð0Þ þ D sinhð0Þ ¼ Aþ C: (8.55)

However, based on the boundary conditions (Eq. 8.31), we already know that

A ¼ �C. Substitution in Eq. 8.55 gives Y2 ¼ 0. Therefore, Y2 F1= ¼ 0 as expected.

8.3.2 Free-Free Beam

A free-free beam is displayed in Fig. 8.6. To determine the FRF at the right end,

coordinate 1 (x ¼ l), we apply a force, F1 ¼ F sin otð Þ, at this location. The left end
is coordinate 2 (x ¼ 0). The boundary conditions at the right end are:

M

EI

����
x¼l

¼ d2y

dx2

����
x¼l

¼ 0 (8.56)
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and

V

EI

����
x¼l

¼ d3y

dx3

����
x¼l

¼ � F

EI
sin otð Þ: (8.57)

At the left end, x ¼ 0, the beam is again free to rotate, but there is no shear force,

so we have:

M

EI

����
x¼0

¼ d2y

dx2

����
x¼0

¼ 0 (8.58)

and

V

EI

����
x¼0

¼ d3y

dx3

����
x¼0

¼ 0: (8.59)

Let’s next use the four boundary conditions described by Eqs. 8.56 through 8.59

to determine the coefficients in Eq. 8.26. At x ¼ 0, we obtain:

@2Y

@x2
ð0Þ ¼ l2 �A cosð0Þ � B sinð0Þ þ C coshð0Þ þ D sinhð0Þð Þ ¼ l2 �Aþ Cð Þ ¼ 0

(8.60)

and

@3Y

@x3
ð0Þ ¼ l3 A sinð0Þ � B cosð0Þ þ C sinhð0Þ þ D coshð0Þð Þ ¼ l3 �Bþ Dð Þ ¼ 0:

(8.61)

From these two equations, we see that A ¼ C and B ¼ D. At x ¼ l, applying the
boundary conditions gives:

@2Y

@x2
ðlÞ ¼ l2 �A cos llð Þ � B sin llð Þ þ C cosh llð Þ þ D sinh llð Þð Þ ¼ 0 (8.62)

F1= F sin(wt)

x 

y 

1 2 

l 

Fig. 8.6 Free-free beam

model with a harmonic force

applied at coordinate 1
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and

@3Y

@x3
ðlÞ ¼ l3 A sin llð Þ � B cos llð Þ þ C sinh llð Þ þ D cosh llð Þð Þ ¼ � F

EI
sin otð Þ:

(8.63)

Substituting for A and B in Eqs. 8.62 and 8.63 yields a system of two equations

with two unknowns.

� C cos llð Þ � D sin llð Þ þ C cosh llð Þ þ D sinh llð Þ ¼ 0 (8.64)

C sin llð Þ � D cos llð Þ þ C sinh llð Þ þ D cosh llð Þ ¼ � F

l3EI
sin otð Þ (8.65)

Combining terms gives:

C � cos llð Þ þ cosh llð Þð Þ þ D � sin llð Þ þ sinh llð Þð Þ ¼ 0 (8.66)

and

C sin llð Þ þ sinh llð Þð Þ þ D � cos llð Þ þ cosh llð Þð Þ ¼ � F

l3EI
sin otð Þ: (8.67)

Arranging Eqs. 8.66 and 8.67 into matrix form results in Eq. 8.68.

� cos llð Þ þ cosh llð Þ � sin llð Þ þ sinh llð Þ
sin llð Þ þ sinh llð Þ � cos llð Þ þ cosh llð Þ

� �
C
D

	 

¼

0

� F

l3EI
sin otð Þ

( )

(8.68)

Using Cramer’s rule, we determine C.

C ¼

0 � sin llð Þ þ sinh llð Þ
� F

l3EI
sin otð Þ � cos llð Þ þ cosh llð Þ

�����
�����

� cos llð Þ þ cosh llð Þ � sin llð Þ þ sinh llð Þ
sin llð Þ þ sinh llð Þ � cos llð Þ þ cosh llð Þ

����
����

(8.69)

C ¼
F

l3EI
� sin llð Þ þ sinh llð Þð Þ

� cos llð Þ þ cosh llð Þð Þ2 � sin llð Þ þ sinh llð Þð Þ � sin llð Þ þ sinh llð Þð Þ sin otð Þ

(8.70)

C ¼ F � sin llð Þ þ sinh llð Þð Þ
2l3EI 1� cos llð Þ cosh llð Þð Þ sin otð Þ (8.71)
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Let’s now calculate D.

D ¼

� cos llð Þ þ cosh llð Þ 0

sin llð Þ þ sinh llð Þ � F

l3EI
sin otð Þ

�����
�����

� cos llð Þ þ cosh llð Þ � sin llð Þ þ sinh llð Þ
sin llð Þ þ sinh llð Þ � cos llð Þ þ cosh llð Þ

����
����

(8.72)

D ¼
� F

l3EI
� cos llð Þ þ cosh llð Þð Þ

� cos llð Þ þ cosh llð Þð Þ2 � sin llð Þ þ sinh llð Þð Þ � sin llð Þ þ sinh llð Þð Þ sin otð Þ

(8.73)

D ¼ F cos llð Þ � cosh llð Þð Þ
2l3EI 1� cos llð Þ cosh llð Þð Þ sin otð Þ (8.74)

To find Y1 due to the harmonic force F1 (see Fig. 8.6), we substitute for A, B, C,
and D and let x ¼ l in Eq. 8.26.

Y1 ¼ A cos llð Þ þ B sin llð Þ þ C cosh llð Þ þ D sinh llð Þ (8.75)

Y1 ¼ C cos llð Þ þ D sin llð Þ þ C cosh llð Þ þ D sinh llð Þ (8.76)

Y1 ¼ C cos llð Þ þ cosh llð Þð Þ þ D sin llð Þ þ sinh llð Þð Þ (8.77)

Y1 ¼ F � sin llð Þ þ sinh llð Þð Þ
2l3EI 1� cos llð Þ cosh llð Þð Þ sin otð Þ cos llð Þ þ cosh llð Þð Þ

þ F cos llð Þ � cosh llð Þð Þ
2l3EI 1� cos llð Þ cosh llð Þð Þ sin otð Þ sin llð Þ þ sinh llð Þð Þ ð8:78Þ

Expanding and simplifying Eq. 8.78 gives:

Y1 ¼ cos llð Þ sinh llð Þ � sin llð Þ cosh llð Þ
l3EI 1� cos llð Þ cosh llð Þð Þ F sin otð Þ: (8.79)

The direct FRF at the beam’s free end is:

Y1
F1

¼ cos llð Þ sinh llð Þ � sin llð Þ cosh llð Þ
l3EI 1� cos llð Þ cosh llð Þð Þ : (8.80)
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For the cross FRF, Y2 F1= , we require the expression for Y2. This is the response
at coordinate 2 due to the harmonic force at coordinate 1. At x ¼ 0 we have:

Y2 ¼ A cosð0Þ þ B sinð0Þ þ C coshð0Þ þ D sinhð0Þ ¼ Aþ C: (8.81)

Based on the free boundary condition (Eq. 8.60), we know that A ¼ C. There-
fore, Y2 ¼ 2C. Using Eq. 8.71, we obtain:

Y2 ¼ � sin llð Þ þ sinh llð Þð Þ
l3EI 1� cos llð Þ cosh llð Þð ÞF sin otð Þ: (8.82)

The cross FRF is finally:

Y2
F1

¼ � sin llð Þ þ sinh llð Þð Þ
l3EI 1� cos llð Þ cosh llð Þð Þ : (8.83)

8.4 Solid Damping in Beam Models

At this point we have not yet included damping in our continuous beam transverse

vibration FRFs. As we discussed in Sect. 2.4, various damping models are available.

These include: viscous damping, which relates the damping force to velocity;

Coulomb damping, which represents the energy dissipation due to dry sliding

between two surfaces; and solid damping, which occurs due to internal energy

dissipation within the material of the vibrating body. Viscous damping is convenient

mathematically, but solid damping makes the most intuitive sense for modeling the

vibration of continuous beams.

Solid damping is included in the differential equation of motion as a complex

stiffness term. For the differential equation of forced harmonic motion, we include

the unitless solid damping factor, �, as:

m€xþ k 1þ i�ð Þx ¼ Feiot: (8.84)

In our continuous beam model, this material-dependent damping is conve-

niently incorporated in the elastic modulus which, together with the second

moment of area and beam length, defines the beam’s stiffness. The new complex
modulus, Es, is:

Es ¼ E 1þ i�ð Þ: (8.85)
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Damping is therefore incorporated in the continuous beam FRFs by replacing E
with Es. Note that this substitution also holds for l4 ¼ o2 rA

EsI
.

Let’s now explore the relationship between � and the viscous damping ratio, z.
For the forced harmonic motion described by Eq. 8.84, we can assume a solution

of the form xðtÞ ¼ Xeiot. Substitution yields:

�mo2 þ k 1þ i�ð Þ� �
Xeiot ¼ Feiot: (8.86)

Rearranging to identify the FRF gives:

X

F
oð Þ ¼ 1

k � mo2 þ ik�
: (8.87)

The value at resonance,3 where o ¼ on, is:

X

F
onð Þ ¼ 1

k � mo2
n þ ik�

¼ 1

k � m k
m þ ik�

¼ 1

ik�
: (8.88)

The corresponding FRF magnitude is 1 k�= . For viscous damping, we can

complete an equivalent analysis. The differential equation of motion is now:

m€xþ c _xþ kx ¼ Feiot: (8.89)

Again, assuming a solution of the form xðtÞ ¼ Xeiot gives:

�mo2 þ iocþ k
� �

Xeiot ¼ Feiot: (8.90)

The FRF is:

X

F
oð Þ ¼ 1

�mo2 þ iocþ k
: (8.91)

As we saw in Sect. 3.2, we can rewrite this equation as:

X

F
oð Þ ¼ 1

k

1

1� o
on

� �2
 !

þ i2z
o
on

� �

0
BBBB@

1
CCCCA: (8.92)

3We consider the resonant case because this is where damping has the most significant effect. Its

influence is less at frequencies far from resonance.
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At resonance, the FRF value is:

X

F
onð Þ ¼ 1

k

1

1� on

on

� �2
 !

þ i2z
on

on

� �

0
BBBB@

1
CCCCA ¼ 1

i2kz
: (8.93)

The FRF magnitude at resonance for viscous damping is therefore 1 2kz= .

Equating this result with the resonant magnitude for solid damping gives the

relationship between � and z at resonance.

z ¼ �

2
(8.94)

Solid damping factors are quite low. For steel alloys, typical values are between

0.001 and 0.002. According to Eq. 8.93, the equivalent damping ratio at resonance

is 0.0005–0.001 (0.05–0.1%). These small values emphasize that most damping in

structures is introduced at the connections between individual beam members rather

than within the beams themselves.

By the Numbers 8.2

Let’s consider an example fixed-free beam and calculate the direct FRF at its free

end. We will use the dimensions and material properties for a typical steel ruler/

machinist’s scale; see Fig. 8.7. For the steel beam, we will use an elastic modulus of

200 GPa and a density of 7,800 kg/m3. The second moment of area is:

I ¼ ab3

12
¼ 0:019 0:001ð Þ3

12
¼ 1:583� 10�12 m4

x 

y 

a = 19

b = 1 mm

l = 150

Fig. 8.7 By the Numbers
8.2 – Dimensions for a steel

machinist’s scale with fixed-

free boundary conditions
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and the cross-sectional area, A, is:

A ¼ ab ¼ 0:019 0:001ð Þ ¼ 1:9� 10�5 m2:

To plot the free end direct FRF, we use Eq. 8.54 and replace E with the complex

modulus Es ¼ E 1þ i�ð Þ from Eq. 8.85.

Y1
F1

¼ sin llð Þ cosh llð Þ � cos llð Þ sinh llð Þ
l3E 1þ i�ð ÞI 1þ cos llð Þ cosh llð Þð Þ (8.95)

Let’s choose a solid damping factor of 0.01 for display purposes. Even though

this value is approximately an order of magnitude too large, it reduces the “sharp-

ness” of the real and imaginary parts of the FRF and enables us to view them more

clearly. Figure 8.8 shows the first three bending modes for a bandwidth of 1,200 Hz;

note that the scale was selected to be able to observe the third mode. If we increased

the frequency range, we would see additional modes.4 These first three modes,

which appear at 36.4, 227.8, and 637.9 Hz, correspond to the first three bending

mode shapes shown in Fig. 6.19.

For Euler–Bernoulli beams, a closed-form expression for the natural frequencies

has been developed for various boundary conditions (Blevins 2001). See Eq. 8.96,

where i ¼ 1; 2; 3::: indicates the natural frequency numbers in ascending order.
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Fig. 8.8 By the Numbers 8.2 – Direct FRF for the free end of the beam depicted in Fig. 8.7

4 For a continuous beam there are an infinite number of modes for an infinite bandwidth.
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fn;i ¼ b2i
2pl2

ffiffiffiffiffiffi
EI

rA

s
Hzð Þ (8.96)

For the fixed-free beam in this example, the bi values are provided in Table 8.1

(Blevins 2001). Substitution of the beam geometry and material properties gives the

same first three natural frequencies we determined using Figs. 8.8 and 8.9.

The direct FRF is presented in a semi-logarithmic format in Fig. 8.9. We again

observe the resonant peaks at 36.4, 227.8, and 637.9 Hz, but we also see local

minima at 159.4, 516.6, and 1,077.8 Hz. These are referred to as anti-resonant
frequencies and represent frequencies where the beam response is small even for a

large force input. While this definition sounds similar to the node description

provided in Sect. 6.5, in this case we are describing frequencies, not spatial

locations (nodes), where the response is small. The code used to produce

Figs. 8.8 and 8.9 is provided in MATLAB® MOJO 8.2.

0 200 400 600 800 1000 1200
10−8

10−6

10−4

10−2

100

f (Hz)

|Y
1/

F
1| 

(m
/N

)

Anti-resonances

Resonances

Fig. 8.9 By the Numbers 8.2 – Semi-logarithmic plot of the direct FRF for the free end of the

beam depicted in Fig. 8.7

Table 8.1 bi values for
fixed-free Euler–Bernoulli

beam natural frequency

calculations (Blevins 2001)

i bi
1 1.87510107

2 4.69409113

3 7.85475744

4 10.99554073

5 14.13716839

>5 p 2= 2i� 1ð Þ
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MATLAB
®

 MOJO 8.2 
% matlab_mojo_8_2.m

clc
clear all
close all

f = 1:0.1:1200;         % Hz
omega = f*2*pi;         % rad/s

%  Define beam
a = 19e-3;              % m
b = 1e-3;               % m
l = 150e-3;             % m
E = 2e11;               % N/m^2
density = 7800;         % kg/m^3
eta = 0.01;              
I = a*b^3/12;           % m^4
EI = E*I;               % N-m^2
EI = EI*(1+1i*eta);     % N-m^2
A = a*b;                % m^2

lambda = (omega.^2*density*A/EI).^0.25;

% Direct FRF for the free end of the fixed-free bea m
Y1_F1 = (sin(lambda*l).*cosh(lambda*l)-
cos(lambda*l).*sinh(lambda*l))./(lambda.^3*EI.*(1+c os(lambda*l).*cosh(lambda*
l)));

figure(1)
subplot(211)
plot(f, real(Y1_F1), 'k')
set(gca,'FontSize', 14)
ylim([-0.005 0.005])
ylabel('Real (m/N)')
subplot(212)
plot(f, imag(Y1_F1), 'k')
set(gca,'FontSize', 14)
ylim([-0.01 0.001])
xlabel('Frequency (Hz)')
ylabel('Imaginary (m/N)')

figure(2)
semilogy(f, abs(Y1_F1), 'k')
set(gca,'FontSize', 14)
xlabel('f (Hz)')
ylabel('|Y_1/F_1| (m/N)')

What would happen if we increased the width of the beam in Fig. 8.7? Let’s

consider a 20% increase so that a ¼ 0:019 1:2ð Þ ¼ 0:0228 m. The beam stiffness

depends on the modulus (unchanged), length (unchanged), and second moment of

area. The new second moment of area is:

I ¼ ab3

12
¼ 0:0228 0:001ð Þ3

12
¼ 1:9� 10�12m4:

Because the stiffness increases with I, we might anticipate that the natural

frequencies will increase with a. The new direct FRF, together with the previous

result from Fig. 8.8 (dotted line), is provided in Fig. 8.10. Surprisingly, the natural
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frequencies did not change! While the wider beam is indeed stiffer, it is also

heavier. These effects serve to offset each other so that the natural frequencies

are not affected. We can observe this in Eq. 8.96. Substituting for I and A (based on

the rectangular beam in Fig. 8.7), we see that a cancels.

fn;i ¼ b2i
2pl2

ffiffiffiffiffiffiffiffiffiffiffi
E
ab3

12
rab

vuuut ¼ b2i
2pl2

ffiffiffiffiffiffiffiffiffi
E
b2

12
r

vuuut
Hzð Þ (8.97)

The same result is obtained from Eq. 8.95. The roots of the denominator give the

natural frequencies and these roots depend on the product:

ll ¼ o2 rA
EsI

� �1
4

l ¼ o2 rab

Es
ab3

12

0
BB@

1
CCA

1
4

l ¼ o2 r

Es
b2

12

0
BB@

1
CCA

1
4

l:

Again, the natural frequencies of the rectangular beam do not depend on a
after substituting and simplifying. While the resonant peaks appear at the same

frequencies for both FRFs in Fig. 8.10, the new FRF with the increased width

is stiffer (its FRF appears below the original FRF). The source of the change in

magnitude is also observed using Eq. 8.95. We see that I appears in the denomi-

nator. It does not change the roots, but does serve to scale the FRF. As I (and the

denominator) increases with a, the magnitude decreases.
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Fig. 8.10 By the Numbers 8.2 – Direct FRF for the beam with a 20% width increase (the dotted

line shows the FRF for the original width)
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8.5 Rotation Frequency Response Functions

In Sects. 8.3.1 and 8.3.2 we derived the transverse vibration FRFs, Y F= , for beams

with fixed-free and free-free boundary conditions. We are not limited to these

boundary conditions of course. We can complete the same analysis using the

boundary conditions summarized in Table 8.2. In this table we see one unfamiliar

entry – the boundary condition due to a harmonic bending couple is included. Let’s

now extend our analysis to consider not only transverse deflection, y x; tð Þ, but also
rotation of the beam in the bending plane, y x; tð Þ; see Fig. 8.11.

To determine the rotation FRF, Y1 F1= , for a fixed-free beam, we return to

Eq. 8.26 and substitute A ¼ �C and B ¼ �D (from Eqs. 8.31 and 8.32).

Y ¼ C � cos lxð Þ þ cosh lxð Þð Þ þ D � sin lxð Þ þ sinh lxð Þð Þ (8.98)

We obtain rotation by differentiating Y with respect to x, Y ¼ dY dx= . We then

evaluate this expression at x ¼ l (coordinate 1) and substitute for C and D from

Eqs. 8.45 and 8.48. Finally, we divide this expression by F1. The result is provided

in Eq. 8.99.

Y1

F1

¼ sin lLð Þ sinh lLð Þ
l2EI 1þ cos lLð Þ cosh lLð Þð Þ (8.99)

In addition to the deflection and rotation responses due to a harmonic force,

we can also determine the responses due to a harmonic bending couple, Y1 M1=
and Y1 M1= . We find these terms by applying the harmonic bending couple M1 ¼
Msin otð Þ at coordinate 1 as shown in Fig. 8.12. The boundary conditions

at coordinate 2 (x ¼ 0) are y ¼ 0 and @y @x= ¼ 0. The boundary conditions at

Table 8.2 Boundary

conditions for beam FRF

calculations

End description Boundary conditions

Fixed y ¼ 0, @y @x= ¼ 0

Free @2y @x2
� ¼ 0, @3y @x3

� ¼ 0

Pinned y ¼ 0, @2y @x2
� ¼ 0

Sliding @y @x= ¼ 0, @3y @x3
� ¼ 0

Harmonic force F sin otð Þ @3y @x3
� ¼ � F EI=ð Þ sin otð Þ

Harmonic bending couple

M sin otð Þ
@2y @x2
� ¼ M EI=ð Þ sin otð Þ

x 

y 

q2 q1

1 

y2 y1

2 

Fig. 8.11 Coordinates for

both transverse deflection and

rotation vibration in the

bending plane
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coordinate 1 (x ¼ l) are @2y @x2
� ¼ M EI= sin otð Þ and @3y @x3

� ¼ 0. We find

the coefficients A, B, C, and D from Eq. 8.26 in the same manner as described

previously.

At x ¼ 0, the situation is identical to the force application case shown in Fig. 8.5,

so we obtain A ¼ �C and B ¼ �D. At x ¼ l, we first use @2y @x2
� ¼ M EI= sin otð Þ

as demonstrated in Eq. 8.100.

@2y

@x2

����
x¼l

¼ l2
�A cos llð Þ � B sin llð Þþ
C cosh llð Þ þ D sinh llð Þ

� �
¼ M

EI
sin otð Þ (8.100)

Substitution for A and B in Eq. 8.100 gives:

C cos lLð Þ þ cosh lLð Þð Þ þ D sin lLð Þ þ sinh lLð Þð Þ ¼ M

l2EI
sin otð Þ: (8.101)

We next apply @3y @x3
� ¼ 0 (at x ¼ l) and substitute for A and B to get:

C � sin lLð Þ þ sinh lLð Þð Þ þ D cos lLð Þ þ cosh lLð Þð Þ ¼ 0: (8.102)

Expressing Eqs. 8.101 and 8.102 in matrix form yields:

cos lLð Þ þ cosh lLð Þ sin lLð Þ þ sinh lLð Þ
� sin lLð Þ þ sinh lLð Þ cos lLð Þ þ cosh lLð Þ
� �

C
D

	 

¼

M

l2EI
0

8<
:

9=
; sin otð Þ:

(8.103)

Applying Cramer’s rule, we solve for C and D.

C ¼ M cos lLð Þ þ cosh lLð Þð Þ
2l2EI 1þ cos lLð Þ cosh lLð Þð Þ sin otð Þ (8.104)

D ¼ � M � sin lLð Þ þ sinh lLð Þð Þ
2l2EI 1þ cos lLð Þ cosh lLð Þð Þ sin otð Þ (8.105)

M1=Msin(w t)

x 

y 

1 2 

l 

Fig. 8.12 Fixed-free beam

with a harmonic bending

couple applied at the free end
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We find Y1 by substituting Eqs. 8.104 and 8.105, together with the relationships

A ¼ �C and B ¼ �D in Eq. 8.26. We also set x ¼ l. The result is provided in

Eq. 8.106.

Y1 ¼ �
cos lLð Þ þ cosh lLð Þð Þ cos lLð Þ � cosh lLð Þð Þ

2l2EI 1þ cos lLð Þ cosh lLð Þð Þ þ
sin lLð Þ � sinh lLð Þð Þ sin lLð Þ � sinh lLð Þð Þ

2l2EI 1þ cos lLð Þ cosh lLð Þð Þ

0
BB@

1
CCAM sin otð Þ (8.106)

We obtain the Y1 M1= FRF at the free end of the fixed-free beam by dividing

Eq. 8.106 by M1 and simplifying; see Eq. 8.107. A comparison of Eqs. 8.107 and

8.99 shows us that the Y1 M1= and Y1 F1= FRFs are identical.

Y1
M1

¼

�

cos lLð Þ þ cosh lLð Þð Þ cos lLð Þ � cosh lLð Þð Þ
2l2EI 1þ cos lLð Þ cosh lLð Þð Þ þ

sin lLð Þ � sinh lLð Þð Þ sin lLð Þ � sinh lLð Þð Þ
2l2EI 1þ cos lLð Þ cosh lLð Þð Þ

0
BBB@

1
CCCAM sin otð Þ

M sin otð Þ

Y1
M1

¼ �

cos lLð Þ þ cosh lLð Þð Þ cos lLð Þ � cosh lLð Þð Þ
2l2EI 1þ cos lLð Þ cosh lLð Þð Þ þ

sin lLð Þ � sinh lLð Þð Þ sin lLð Þ � sinh lLð Þð Þ
2l2EI 1þ cos lLð Þ cosh lLð Þð Þ

0
BBB@

1
CCCA

Y1
M1

¼ sin lLð Þ sinh lLð Þ
l2EI 1þ cos lLð Þ cosh lLð Þð Þ ð8:107Þ

To determine theY1 M1= FRF, we return to Eq. 8.26 and substitute A ¼ �C and

B ¼ �D (from Eqs. 8.31 and 8.32).

Y ¼ C � cos lxð Þ þ cosh lxð Þð Þ þ D � sin lxð Þ þ sinh lxð Þð Þð Þ (8.108)

We then findY1 M1= by: (1) differentiating Y with respect to x to obtain rotation
Y ¼ dY dx= ; (2) evaluating this expression at x ¼ l; (3) substituting for C and D
from Eqs. 8.104 and 8.105; and (4) dividing this result by M1. See Eq. 8.109.

Y1

M1

¼ sin lLð Þ cosh lLð Þ þ cos lLð Þ sinh lLð Þ
lEI 1þ cos lLð Þ cosh lLð Þð Þ (8.109)

This process can be repeated for any of the boundary conditions shown in

Table 8.2. The FRFs for fixed-free and free-free boundary conditions are

summarized in Table 8.3, where both direct and cross FRFs are included for the

free-free beam. As discussed previously, no cross FRFs are shown for the fixed-free

beam because the response at the free end is zero for any excitation at the fixed end

and the response is always zero at the fixed end.
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8.6 Transverse Vibration FRF Measurement Comparisons

8.6.1 Fixed-Free Beam

To apply the FRFs defined in Table 8.3, let’s compare these models with

measurements completed using the BEP. In Sect. 7.4, we performed an impact

test on the BEP with the cantilevered steel rod extended 130 mm beyond the base;

the measurement setup is displayed in Fig. 7.20. Let’s now model the rod as a fixed-

free beam with a length of 130 mm and compare the analytical prediction with the

measured result (shown previously in Fig. 7.21).

The relevant equation from Table 8.2 is:

Y1
F1

¼ sin llð Þ cosh llð Þ � cos llð Þ sinh llð Þ
l3E 1þ i�ð ÞI cos llð Þ cosh llð Þ þ 1ð Þ ;

where l4 ¼ o2 rA
E 1þi�ð ÞI . The beam in this case is a 12.7-mm-diameter cylinder,

so the second moment of area is:

I ¼ pd 4

64
¼ p 0:0127ð Þ4

64
¼ 1:277� 10�9m4;

and the cross-sectional area, A, is:

A ¼ pd2

4
¼ p 0:0127ð Þ2

4
¼ 1:267� 10�4 m2:

For the steel rod, we can use r ¼ 7; 800 kg=m3 and E ¼ 200GPa. The measured

(dotted line) and predicted (solid line) FRFs are shown in Fig. 8.13. The solid

Table 8.3 Euler–Bernoulli beam FRFs for fixed-free and free-free boundary conditions (Bishop

and Johnson 1960). Coordinate 2 is the fixed end for the fixed-free beam

Y2
F2

Y2

F2

,
Y2
M2

Y1
F2

,
Y2
F1

Y1

F2

,
Y2
M1

Y2

M2

Y2

F1

,
Y1
M2

Y1

M2

,
Y2

M1

Y1
F1

Y1

F1

,
Y1
M1

Y1

M1

Free-free

�c1

l3c7

�c2

l2c7

c3

l3c7

c4

l2c7

c5
lc7

�c4

l2c7

c6
lc7

�c1

l3c7

c2

l2c7

c5
lc7

Fixed-free

�c1

l3c8

c2

l2c8

c5
lc8

Terms c1 through c8

c1 ¼ cos llð Þ sinh llð Þ � sin llð Þ cosh llð Þ c5 ¼ cos llð Þ sinh llð Þ þ sin llð Þ cosh llð Þ
c2 ¼ sin llð Þ sinh llð Þ c6 ¼ sin llð Þ þ sinh llð Þ
c3 ¼ sin llð Þ � sinh llð Þ c7 ¼ EsI cos llð Þ cosh llð Þ � 1ð Þ
c4 ¼ cos llð Þ � cosh llð Þ c8 ¼ EsI cos llð Þ cosh llð Þ þ 1ð Þ
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damping factor was selected to be 0.034 to match the measured and predicted FRF

magnitudes. Given this very large solid damping factor (a reasonable value of

0.001–0.002 was suggested for steel in Sect. 8.4) and the natural frequency mis-

match (the predicted natural frequency is too high), we can make an observation

about the BEP setup. A reasonable explanation for the experimental behavior is that

the split-clamp used to secure the rod in the BEP holder does not provide an ideal

fixed boundary condition. Small relative motion between the rod and base at the

split-clamp connection would explain the additional damping. Also, the effective

beam length may be slightly more than the measured value of 130 mm due to the

radius/chamfer at the edge of the hole used to clamp the rod. This result is not

unique; in practice, it is quite difficult to realize a fixed boundary condition.

8.6.2 Free-Free Beam

Let’s now remove the steel rod from the BEP and measure its response alone

(the rod’s length is 152.5 mm). We can approximate free-free boundary conditions

by supporting the rod on a soft foam base as shown in Fig. 8.14. The appropriate

FRF equation from Table 8.3 is now:

Y1
F1

¼ sin llð Þ cosh llð Þ � cos llð Þ sinh llð Þ
l3E 1þ i�ð ÞI cos llð Þ cosh llð Þ þ 1ð Þ :

A comparison between the measured (dotted line) and predicted (solid line)

FRFs is provided in Fig. 8.15 (5,000 Hz measurement bandwidth). The solid
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Fig. 8.13 Comparison between measured (dotted line) and predicted (solid line) fixed-free FRFs
on the BEP
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damping factor for the prediction is 0.003. This significantly reduced value supports

our theory that the clamping conditions for the rod served as a primary source of

energy dissipation (damping) for the fixed-free setup. We do note, however, that

� ¼ 0:003 is still slightly larger than the anticipated value. In this case, it is the foam
base that contributes the additional damping.

If we examine the FRFs in Fig. 8.15 carefully, we observe a behavior unique

to free-free FRFs. The absolute value of the real parts gets very large as the

frequency approaches zero. This is due to rigid body modes of the free-free beam.

As we discussed in Sect. 6.5, if we imagine the rod floating in space, then applying

a force at the center of mass will cause it to translate as a rigid body in the direction

Fig. 8.14 Experimental impact testing setup for the free-free beam measurement
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Fig. 8.15 Comparison between measured (dotted line) and predicted (solid line) free-free FRFs
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of the force. Alternately, applying a force at any other location will also cause it to

rotate, again as a rigid body. Because there is no oscillation associated with these

modes, they occur at zero frequency and are real-valued. Note that the free-free

FRF expressions in Table 8.3 include these rigid body modes (as seen in the

Fig. 8.15 prediction).

8.6.3 Natural Frequency Uncertainty

As a final consideration regarding the prediction of a beam’s dynamic behavior, we

need to recognize that, because the inputs for any model are uncertain (the true

value of any quantity is never known), the output inherently includes uncertainty.

As we discussed in Sect. 2.4.7, we can perform a first-order Taylor series expansion

of the model (provided an analytical expression is available) to determine the

output uncertainty as a function of the input uncertainties. In this way, we propagate

the input uncertainties through the model to find the output uncertainty. Let’s

consider the sensitivity of the natural frequency equation shown in Eq. 8.96 to the

beam’s length. To do so, let’s rewrite Eq. 8.96 to isolate the beam length, l:

fn;i ¼ 1

l2
b2i
2p

ffiffiffiffiffiffi
EI

rA

s
Hzð Þ:

For the free-free beam discussed in Sect. 8.6.2, the bi values are provided in

Table 8.4 (Blevins 2001). While there is uncertainty associated with E, I, r, A, if we
consider only l, then the natural frequency uncertainty is determined using:

u2 fn;i
� � ¼ @fn;i

@l

� �2

u2ðlÞ ¼ �2

l3
b2i
2p

ffiffiffiffiffiffi
EI

rA

s !2

u2ðlÞ;

where uðlÞ is the beam length uncertainty (the square of the uncertainty, u2ðlÞ, is
referred to as the variance) and the average (or mean) values of the input variables

are applied to evaluate the natural frequency uncertainty. For the free-free 12.7-

mm-diameter steel rod with a nominal length of 152.5 mm and an associated

uncertainty of 0.1 mm, the uncertainty in the first natural frequency is u fn;1
� � ¼

3:2 Hz. This value represents one standard deviation and means that we would

Table 8.4 bi values for free-
free Euler–Bernoulli beam

natural frequency calculations

(Blevins 2001)

i bi
1 4.73004074

2 7.85320462

3 10.9956078

4 14.1371655

5 17.2787597

>5 p 2= 2i� 1ð Þ
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expect our predicted natural frequency to be within �3.2 Hz of the true value 68%

of the time for a normal or Gaussian distribution. The relationships between error,

uncertainty, the measured/predicted value, and the (unknown) true value are

presented graphically in Fig. 8.16.5 A complete measurement/prediction descrip-

tion must include not only the mean value but also the associated uncertainty.

8.7 Torsion Vibration

The equation of motion for a uniform beam with a circular cross section under

torsion vibration is provided in Eq. 8.110, where G is the beam’s shear modulus and

f x; tð Þ is the rotation about the beam’s axis. The following assumptions apply:

(1) radial lines extending from the beam center to its outer diameter remain straight

after an external torque is applied; and (2) shear is the only significant stress

(Bishop and Johnson 1960).

G
@2f
@x2

¼ r
@2f
@t2

(8.110)

For harmonic torsion vibration due to an external torque T sin otð Þ, a general

solution to Eq. 8.110 is given by f x; tð Þ ¼ FðxÞ sin otð Þ, where FðxÞ is a function

that describes the position-dependent vibration behavior and o is the forcing

frequency (rad/s). Calculating the second-order partial derivatives of this general

solution with respect to x and t and substituting in Eq. 8.110 yields Eq. 8.111, where
the sin otð Þ term appears on both sides of the equality and is not shown.

5 The authors credit Dr. W.T. Estler (retired, National Institute of Standards and Technology) with

this figure.

Measured/
predicted value  

True value
(unknown)  

Error 

Uncertainty interval 

The value of the measurement/
prediction lies in the uncertainty
interval with a stated level of
confidence. 

Fig. 8.16 Relationships between error, uncertainty, the measured/predicted value, and the

unknown true value
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G
@2F
@x2

¼ �o2r
� �

F (8.111)

A general solution to Eq. 8.111 is given in Eq. 8.112, where l ¼ o
ffiffiffiffiffiffiffiffiffi
r G=

p
. Using

this equation, we can determine the rotation FRFs for a free-free beam due to

an external torque. Two boundary conditions are required. First, @F @x= ¼ 0 at a

free boundary. Second, for an external torque application at the beam’s end,

@F @x= ¼ T
GJ sin otð Þ, where T is the harmonic torque magnitude and J is the second

polar moment of area for the beam’s cross section. This boundary condition follows

from the relationship between the shear stress, t, at a radius r and the shear strain, g,
t ¼ Gg, or Tr J= ¼ rG df

dx .

FðxÞ ¼ A cos lxð Þ þ B sin lxð Þ (8.112)

In Fig. 8.17, an external torque T1 ¼ T sin otð Þ is applied at the right end of the

free-free beam, labeled as coordinate f1, where x ¼ l and l is the beam length

(x ¼ 0 at the left end of the beam). The corresponding boundary conditions are

provided in Eq. 8.113.

@F
@x

����
x¼0

¼ 0
@F
@x

����
x¼l

¼ T

GJ
sin otð Þ (8.113)

We determine the coefficients A and B in Eq. 8.112 by calculating @F @x= and

applying the two boundary conditions from Eq. 8.113. This gives A ¼ �T
GJl sin llð Þ �

sin otð Þ and B ¼ 0. Substitution of these coefficient values in Eq. 8.112 gives

Eq. 8.114.

FðxÞ ¼ �T

GJl sin llð Þ cos lxð Þ sin otð Þ (8.114)

Finally, we write the direct torsion FRF at coordinate 1, F1 T1= , as shown in

Eq. 8.115 by substituting T1 ¼ T sin otð Þ. Similarly, we find the cross FRF, F2 T1= ,

by substituting x ¼ 0 in Eq. 8.114; see Eq. 8.116.

F1

T1
¼ � cos llð Þ

GJl sin llð Þ ¼
� cot llð Þ

GJl
(8.115)

F2

T1
¼ � cos l � 0ð Þ

GJl sin llð Þ ¼
�1

GJl sin llð Þ ¼
� csc llð Þ

GJl
(8.116)

x 

T1

l 

f2

f1

Fig. 8.17 Circular cross

section free-free beam with a

torque applied at coordinatef1
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To determine the direct and cross FRFs due to a torque applied at the other end

of the beam, F2 T2= and F1 T2= , we repeat the process. These results are given in

Eqs. 8.117 and 8.118. In order to introduce damping in the component responses,

we again incorporate solid damping, but this time using a complex shear modulus

Gs ¼ G 1þ i�ð Þ. Note that l is a function of G as well.

F2

T2
¼ � cot llð Þ

GJl
(8.117)

F1

T2
¼ � csc llð Þ

GJl
(8.118)

8.8 Axial Vibration

The equation of motion for a uniform cross section beam6 under axial, or longitudinal,

vibration is provided in Eq. 8.119, where g is the deflection along the beam axis and

Poisson effects are neglected7 (Bishop and Johnson 1960).

E
@2g
@x2

¼ r
@2g
@t2

(8.119)

Because the equation of motion has the same form as Eq. 8.110 for torsion,

the free-free receptance development is similar to that provided in Sect. 8.7. For the

free-free beam of length l shown in Fig. 8.18, the application of a harmonic axial

force P1 ¼ P sin otð Þ enables us to determine the FRFs G1 P1= and G2 P1= .

See Eqs. 8.120 and 8.121, where l ¼ o
ffiffiffiffiffiffiffiffiffi
r E=

p
. As before, determining the FRFs

requires that two boundary conditions be applied. In this case, these are @G @x= ¼ 0

at a free end and @G @x= ¼ P
EA sin otð Þ for an external axial force application at the

beam’s end, where A is the beam’s cross-sectional area. The latter boundary

conditions follows from the relationship between the axial stress, s, and axial

strain, e, s ¼ Ee, or P
A ¼ E dg dx=ð Þ. The other two FRFs for the beam in Fig. 8.14

are determined by applying P2 to g2. See Eqs. 8.122 and 8.123. Again, in order to

x 
v1

P1 
v2

l Fig. 8.18 Free-free beam

with an axial force P1 applied

at coordinate v1

6 The beam’s cross section is not required to be circular as in the torsion vibration analysis in Sect. 8.7.
7 This means that the beam’s expansion and contraction in the directions normal to the oscillating

axial deflection are ignored.
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introduce damping in the component responses, we apply solid damping by

replacing the elastic modulus with the complex elastic modulus Es ¼ E 1þ i�ð Þ.
Note that l is a function of E as well.

G1

P1

¼ � cot llð Þ
EAl

(8.120)

G2

P1

¼ � csc llð Þ
EAl

(8.121)

G2

P2

¼ � cot llð Þ
EAl

(8.122)

G1

P2

¼ � csc llð Þ
EAl

(8.123)

By the Numbers 8.3

Let’s now compare the transverse deflection, torsion, and axial FRFs for a cylindrical

beam. We will consider a 10 mm diameter steel beam that is 500 mm long with free-

free boundary conditions. Steel’s material properties are r ¼ 7; 800 kg=m3,

E ¼ 200GPa, Poisson’s ratio is n ¼ 0:29, and G ¼ E 2 1þ nð Þ= . Also, for the

cylindrical beam, A ¼ pd2 4= , I ¼ pd 4 64= , and J ¼ pd2 32= . For plotting purposes,

let’s select � ¼ 0:01. The relevant FRF equations are Eq. 8.80 for transverse

deflection, Eq. 8.115 for torsion, and Eq. 8.120 for axial deflection. The FRFs are

plotted using a semi-logarithmic scale in Figs. 8.19–8.21. We see that the axial

0 2000 4000 6000 8000
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10−6

10−8

f (Hz)

| Y
1/

F
1| 

(m
/N

)

Fig. 8.19 By the Numbers 8.3 – Semi-logarithmic plot of the transverse deflection FRF for the

10 mm diameter, 500 mm long free-free steel beam
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deflection natural frequencies are higher than the torsion natural frequencies which

are, in turn, higher than the transverse deflection natural frequencies. We can also

note that the increasing magnitude as the responses approach zero frequency is due

to the rigid body modes for the free-free beam. The code used to produce

Figs. 8.19–8.21 is provided in MATLAB® MOJO 8.3.

100

10−1

10−2

10−3

10−4

0 2000 4000 6000 8000
f (Hz)

| Φ
1/

T
1 | 

 (
ra

d/
N

-m
)

Fig. 8.20 By the Numbers 8.3 – Semi-logarithmic plot of the torsion FRF for the 10 mm diameter,

500 mm long free-free steel beam
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Fig. 8.21 By the Numbers 8.3 – Semi-logarithmic plot of the axial deflection FRF for the 10 mm

diameter, 500 mm long free-free steel beam
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MATLAB
®

 MOJO 8.3 
% matlab_mojo_8_3.m 

clc 
clear all 
close all 

f = 1:0.1:8000;         % Hz 
omega = f*2*pi;         % rad/s 

% Define beam 
d = 10e-3;              % m 
l = 500e-3;             % m 
E = 2e11;               % N/m^2 
nu = 0.29; 
G = E/(2*(1+nu));       % N/m^2 
density = 7800;         % kg/m^3 
eta = 0.01;               
A = pi*d^2/4;           % m^2 
I = pi*d^4/64;          % m^4 
J = pi*d^4/32;          % m^4 
E = E*(1+1i*eta);       % N-m^2 
G = G*(1+1i*eta);       % N-m^2 

% Free-free beam FRFs 
% Transverse deflection FRF 
lambda = (omega.^2*density*A/(E*I)).^0.25; 
Y1_F1 = (cos(lambda*l).*sinh(lambda*l)-
sin(lambda*l).*cosh(lambda*l))./(lambda.^3*E*I.*(1-
cos(lambda*l).*cosh(lambda*l))); 

figure(1) 
semilogy(f, abs(Y1_F1), 'k') 
set(gca,'FontSize', 14) 
ylim([3e-9 1e-3]) 
xlabel('f (Hz)') 
ylabel('|Y_1/F_1| (m/N)') 

% Torsion FRF 
lambda = omega*(density/G)^0.5; 
Phi1_T1 = -cot(lambda*l)./(G*J*lambda); 

figure(2) 
semilogy(f, abs(Phi1_T1), 'k') 
ylim([1e-5 1]) 
set(gca,'FontSize', 14) 
xlabel('f (Hz)') 
ylabel('|\Phi_1/T_1| (rad/N-m)') 

% Axial deflection FRF 
lambda = omega*(density/E)^0.5; 
Tau1_P1 = -cot(lambda*l)./(E*A*lambda); 

figure(3) 
semilogy(f, abs(Tau1_P1), 'k') 
ylim([1e-10 1e-5]) 
set(gca,'FontSize', 14) 
xlabel('f (Hz)') 
ylabel('|\Gamma_1/P_1| (m/N)') 
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8.9 Timoshenko Beam Model

While the closed-form Euler–Bernoulli beam transverse vibration FRFs provided in

Table 8.3 are convenient to apply, accurate solutions are obtained only for beams

which exhibit small cross sectional area-to-length ratios (i.e., long slender beams).

An alternative for beams that do not meet this criterion is the Timoshenko beam
model (Weaver et al. 1990). The corresponding differential equation is given by:

@2y

@t2
þ EI

rA
@ 4y

@x4

� �
þ rI

k̂AG

@ 4y

@t4
þ EI

k̂AG

@ 4y

@x2@t2

� �
� I

A

@ 4y

@x2@t2

� �
¼ 0; (8.124)

where k̂ is a shape factor that depends on the beam cross section (Hutchinson 2001).

Equation 8.124 is grouped into three sections (i.e., three parenthetical expressions).

We see that the first section matches the Euler–Bernoulli beam equation provided in

Eq. 8.19. The second and third sections account for shear deformations and rotary

inertia, respectively. While these additional terms improve the model accuracy

(particularly at higher frequencies), the tradeoff is that a closed-form solution to

Eq. 8.124 is not available. Finite element calculations may be applied, but at the

expense of increased computation time.

Chapter Summary

• In continuous models, the mass is distributed throughout the structure, rather

than localized at the coordinates as in discrete models.

• Euler–Bernoulli beam theory can be used to derive transverse deflection FRFs

for continuous cross section beams.

• The beam’s boundary conditions, such as fixed, free, or pinned, determine the

FRF behavior.

• Solid damping can be incorporated in continuous beam FRFs using a complex

modulus.

• The solid damping factor is equal to two times the viscous damping ratio at

resonance.

• Anti-resonant frequencies represent frequencies where the beam response is

small even for a large force input.

• Rotation FRFs are related to the transverse beam FRFs and describe the harmonic

rotation of a beam within the bending plane due to a harmonic force or moment.

• Torsion FRFs describe the ratio of the frequency-domain rotation about the

beam’s axis to a harmonic torque applied to the beam.

• Axial FRFs, which provide the axial deflection response due to a harmonic axial

force, have a similar form to torsion FRFs.

• The Timoshenko beam model may be implemented when the accuracy of the

Euler–Bernoulli beam model is not adequate.
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Exercises

1. Consider a uniform cross sectionfixed-free (i.e., clamped-free or cantilever) beam.

(a) Sketch the first bending mode shape (lowest natural frequency).

(b) Sketch the second mode shape (next lowest natural frequency).

(c) On your sketches in parts (a) and (b), identify any node location(s).

2. In describing beam vibrations using Euler–Bernoulli beam theory, we derived

the equation of motion @ 4Y @x4
�� �� l4Y ¼ 0.

(a) In the equation of motion, what does x represent physically?
(b) In the equation of motion, what does Y represent physically?

(c) Write the equation for l (it replaces several other variables) and describe

what each variable represents (include the SI units).

3. Consider a fixed-free beam. The general solution to the equation of motion

can be written as YðxÞ ¼ A cos lxð Þ þ B sin lxð Þ þ C cosh lxð Þ þ D sinh lxð Þ.
To determine the four coefficients, A through D, four boundary conditions

are required. Write the four boundary conditions (in the table) as a function

of x and y for the beam shown in Fig. P8.3.

At

x ¼ 0

At

x ¼ L

1. 3.

2. 4.

4. Consider the free-sliding beam shown in Fig. P8.4a. Direct and cross FRFs were

measured at six locations and the imaginary parts are provided for the frequency

interval near its second bending natural frequency of 350Hz in Figs. P8.4b–P8.4g.

Given the FRF data, sketch the mode shape corresponding to the second natural

x1

F1

x2 x3 x4 x5 x6
Fig. P8.4a Free-sliding

beam model

y(x,t) 

x 

L 

F1 = F sin(wt)  Fig. P8.3 Fixed-free beam

model
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frequency. Normalize the mode shape to a value of 1 at the free end.

6×10–6

350 Hz 
0

Im
F1

X3
Fig. P8.4d Cross FRF X3

F1

for the free-sliding beam

350 Hz 

0

– 10×10–6

Im
F1

X1
Fig. P8.4b Direct FRF X1

F1

for the free-sliding beam

– 1×10–6

350 Hz 

0

Im
F1

X2
Fig. P8.4c Cross FRF X2

F1

for the free-sliding beam
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–7×10–6

350 Hz 

0

Im
F1

X6
Fig. P8.4g Cross FRF X6

F1
for

the free-sliding beam

7×10–6

350 Hz 

0

Im
F1

X4
Fig. P8.4e Cross FRF X4

F1
for

the free-sliding beam

2×10–6

350 Hz 
0

Im
F1

X5
Fig. P8.4f Cross FRF X5

F1
for

the free-sliding beam

Exercises 317



www.manaraa.com

5. Complete the following for the transverse deflection of a free-free cylindrical

beam. The beam’s diameter is 15 mm and it is 480 mm long. The beam material

is 6061-T6 aluminum with r ¼ 2;700 kg=m3, E ¼ 70GPa, n ¼ 0:35,
G ¼ E 2 1þ nð Þ= , and � ¼ 0:002.

(a) Plot the transverse deflection FRF over a frequency range of 10,000 Hz.

Use a semi-logarithmic scale.

(b) How many modes are captured in this bandwidth (excluding the rigid

body modes)?

(c) What is the natural frequency of the first (non-rigid) bending mode?

6. Complete the following for the torsion vibration of a free-free cylindrical

beam. The beam’s diameter is 15 mm and it is 480 mm long. The beam material

is 6061-T6 aluminum with r ¼ 2;700 kg=m3, E ¼ 70GPa, n ¼ 0:35,
G ¼ E 2 1þ nð Þ= , and � ¼ 0:002.

(a) Plot the torsion FRF over a frequency range of 10,000 Hz. Use a semi-

logarithmic scale.

(b) How many modes are captured in this bandwidth (excluding the rigid body

mode)?

(c) What is the natural frequency of the first (non-rigid) torsion mode?

7. Complete the following for the axial vibration of a free-free cylindrical

beam. The beam’s diameter is 15 mm and it is 480 mm long. The beam material

is 6061-T6 aluminum with r ¼ 2;700 kg=m3, E ¼ 70GPa, n ¼ 0:35,
G ¼ E 2 1þ nð Þ= , and � ¼ 0:002.

(a) Plot the axial FRF over a frequency range of 10,000 Hz. Use a semi-

logarithmic scale.

(b) How many modes are captured in this bandwidth (excluding the rigid body

mode)?

(c) What is the natural frequency of the first (non-rigid) torsion mode?

8. Consider the transverse vibration of a free-free cylindrical beam. If the diame-

ter of a solid beam is d, determine the outer diameter, do, of a hollow beam with

the same length and material properties to give the same natural frequencies as

the solid beam if the inner diameter, di, is one-half of the outer diameter,

di ¼ 0:5do.
9. For a 25 mm diameter 6061-T6 aluminum rod (r ¼ 2;700 kg=m3 and

E ¼ 70GPa) with a nominal length of 190 mm and an associated uncertainty

of 0.2 mm, determine the uncertainty in the second bending natural frequency,

u fn;2
� �

(in Hz), if free-free boundary conditions are imposed. You may neglect

the uncertainty in E, r, and d.
10. The Timoshenko beam model is more accurate than the Euler–Bernoulli beam

model because it includes the effects of ______________ and

______________.
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Chapter 9

Receptance Coupling

I have made this letter longer than usual, only because I have
not had the time to make it shorter.

– Blaise Pascal

9.1 Introduction

In Chap. 1 through 8 we discussed both discrete and continuous beam models that

can be used to describe the behavior of vibrating systems. We also detailed

experimental techniques that we can use to identify these models. In this chapter,

we will introduce an approach to combine models or measurements of individual

components in order to predict the assembly’s frequency response function (FRF).

This method is referred to as receptance coupling (Bishop and Johnson 1960); recall

from Sect. 7.1 that a receptance is a type of FRF.

IN A NUTSHELL Receptance coupling enables the connection of

measurements to measurements, models to models, or models to

measurements. Sometimes it is easy to make the measurements and

sometimes it is difficult or impossible, such as when the component to

be added only exists as a model.

9.2 Two-Component Rigid Coupling

Let’s begin with the rigid coupling of two components, or substructures. Our goal is
to predict the direct and cross FRFs for the assembly based on the direct and cross

FRFs for the two components. As a practical example, we could consider

T.L. Schmitz and K.S. Smith, Mechanical Vibrations: Modeling and Measurement,
DOI 10.1007/978-1-4614-0460-6_9, # Springer Science+Business Media, LLC 2012
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performing experiments to identify the free-free FRFs for an airplane’s wing

and fuselage separately and then coupling the wing to the fuselage mathematically

to predict the response for the entire structure. This concept is demonstrated

in Fig. 9.1; where the two components, I and II, are rigidly coupled to form

assembly III. Note that the direct and cross FRFs for the two components I and II

could be derived from: (1) measurements; (2) discrete models; or (3) continuous

beam models. The coupling coordinates are x1a and x1b for the two substructures

I and II, respectively. The corresponding assembly coordinate, X1, is located at the

same physical location as x1a and x1b after they are joined.1 An attractive aspect of

receptance coupling is that the component FRFs are only required at the coupling

locations and any point where the assembly response is to be predicted. Therefore,

the assembly’s direct receptance at X1 due to a harmonic force applied at that

location, H11 ¼ X1

F1
, can be fully described using the direct component receptances

h1a1a ¼ x1a
f1a

and h1b1b ¼ x1b
f1b

obtained from harmonic forces applied to the

components at x1a and x1b, respectively.

IN A NUTSHELL Recall that the FRFs (H11, h1a1a, and h1b1b) are
complex functions of frequency. At each frequency, the FRF has the

form aþ i � b. The function may be continuous (e.g., based on a

beam model) or it may be discrete (i.e., a measurement known only

at a number of frequencies over the measurement frequency range).

To determine the assembly response, we must first describe the compatibility
condition, x1b � x1a ¼ 0, which represents the rigid coupling between component

coordinates x1a and x1b. We can therefore write x1b ¼ x1a ¼ X1 due to our decision

to locate assembly coordinate X1 at the (rigid) coupling point. We must also define

the equilibrium condition, f1a þ f1b ¼ F1, which equates the internal (component)

f1b f1a

x1b x1a

F1

X1

II I

III

Fig. 9.1 Rigid coupling of

components I and II to form

assembly III. The force F1 is

applied to the assembly in

order to determine H11

1We will follow this lower case/upper case notation to differentiate between component and

assembly coordinates throughout the chapter.
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and external (assembly) forces. Let’s substitute for the displacements in the com-

patibility equation.

x1b � x1a ¼ 0

h1b1bf1b � h1a1af1a ¼ 0 ð9:1Þ

We next use the equilibrium condition, rewritten as f1a ¼ F1 � f1b, to eliminate

f1a in Eq. 9.1. Rearranging enables us to solve for f1b.

h1b1bf1b � h1a1aF1 þ h1a1af1b ¼ 0

h1a1a þ h1b1bð Þf1b ¼ h1a1aF1

f1b ¼ h1a1a þ h1b1bð Þ�1h1a1aF1 ð9:2Þ

Now that we have f1b, we can again use the equilibrium condition to determine f1a.

f1a ¼ F1 � f1b

f1a ¼ 1� h1a1a þ h1b1bð Þ�1h1a1a

� �
F1 ð9:3Þ

We solve for H11, as shown in Eq. 9.4. This equation gives the direct assembly

response at the coupling coordinate, X1, as a function of the component receptances.

These frequency-dependent, complex-valued receptances may have any number of

modes. There are no restrictions on the relationship between the number of modes

and coordinates as with modal analysis (i.e., we saw in Sect. 6.5 that the number of

modeled modes and coordinates must be equal to obtain square matrices when

using modal analysis).

H11 ¼ X1

F1

¼ x1a
F1

¼ h1a1af1a
F1

¼ h1a1a � h1a1a h1a1a þ h1b1bð Þ�1h1a1a (9.4)

IN A NUTSHELL Coupling FRFs requires that the mathematical

operations (such as addition or multiplication) be completed in a

frequency-by-frequency manner. For example, if h1a1a is given by

aþ i � b and h1b1b is cþ i � d at frequency o1, then h1a1a þ h1b1bð Þ ¼
aþ cð Þ þ i � bþ dð Þ at o1. It is therefore required that the

component FRFs are defined at the same frequency values. Inverting an FRF means

that we compute 1
aþi�b at each particular frequency. This inversion is completed by

rationalizing the complex number (i.e., multiplying the numerator and denominator

by its complex conjugate). The result at the selected frequency is a�i�b
a2þb2 , which has a

real part a
a2þb2 and an imaginary part �b

a2þb2 . This computation is repeated at every

frequency. Multiplying two FRFs means that we multiply the two complex numbers

at each frequency, aþ i � bð Þ cþ i � dð Þ ¼ ac� bdð Þ þ i � bcþ adð Þ.
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Similarly, we can predict the assembly response at another coordinate, not

coincident with the coupling point, by defining the component receptance at the

desired location. Consider Fig. 9.2, where the direct assembly response at X1 is

again desired, but this location is now at another point on component I. We again

assume x1 and X1 are collocated before and after coupling. The new coupling

coordinates at the rigid coupling point are x2a and x2b. The component direct and

cross receptances corresponding to Fig. 9.2 are h11 ¼ x1
f1
, h2a2a ¼ x2a

f2a
, h12a ¼ x1

f2a
,

and h2a1 ¼ x2a
f1

for I and h2b2b ¼ x2b
f2b

for II. The compatibility condition for the rigid

coupling is x2b � x2a ¼ 0 and we can therefore write x2a ¼ x2b ¼ X2. Also, x1 ¼ X1.

The equilibrium conditions are f2a þ f2b ¼ 0 (because there is no external force at

the coupling point in this case) and f1 ¼ F1.

To determine H11 ¼ X1

F1
, we will first write the component displacements.

For I, we now have two forces acting on the body, so the frequency-domain

displacements are:

x1 ¼ h11f1 þ h12af2a and x2a ¼ h2a1f1 þ h2a2af2a: (9.5)

For II, we have x2b ¼ h2b2bf2b. Substitution into the compatibility condition gives:

x2b � x2a ¼ h2b2bf2b � h2a1f1 � h2a2af2a ¼ 0: (9.6)

We apply the equilibrium conditions to replace f1 with F1 and eliminate f2a
(f2a ¼ �f2b).

h2b2bf2b � h2a1F1 þ h2a2af2b ¼ 0: (9.7)

This enables us to group terms and solve for f2b. Specifically, we have

that f2b ¼ h2a2a þ h2b2bð Þ�1h2a1F1. Therefore, we can also write f2a ¼
� h2a2a þ h2b2bð Þ�1h2a1F1. Substitution of this force value into the H11 expression

f2b f2a

x2b x2a

F1

X2

II I

III

X1

x1 

f1 

Fig. 9.2 Example showing rigid coupling of components I and II to form assembly III. The force

F1 is applied to the assembly at coordinate X1 in order to determine H11 and H21
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gives us the desired result; see Eq. 9.8. Again, the assembly response is written as

a function of the direct (h11, h2a2a, and h2b2b) and cross (h12a and h2a1) receptances
for the two components.

H11 ¼ X1

F1

¼ x1
F1

¼ h11f1 þ h12af2a
F1

¼ h11f1 � h12a h2a2a þ h2b2bð Þ�1h2a1F1

F1

H11 ¼ h11F1 � h12a h2a2a þ h2b2bð Þ�1h2a1F1

F1

¼ h11 � h12a h2a2a þ h2b2bð Þ�1h2a1

(9.8)

We can also use f2a to determine the cross receptance H21. See Eq. 9.9.

H21 ¼ X2

F1

¼ x2a
F1

¼ h2a1f1 þ h2a2af2a
F1

¼ h2a1f1 � h2a2a h2a2a þ h2b2bð Þ�1h2a1F1

F1

H21 ¼ h2a1F1 � h2a2a h2a2a þ h2b2bð Þ�1h2a1F1

F1

¼ h2a1 � h2a2a h2a2a þ h2b2bð Þ�1h2a1

(9.9)

We determine the direct and cross receptances, H22 and H12, respectively,

by applying a force to the assembly coordinate X2. See Fig. 9.3. The component

receptances are again h11 ¼ x1
f1
, h2a2a ¼ x2a

f2a
, h12a ¼ x1

f2a
, and h2a1 ¼ x2a

f1
for I and

h2b2b ¼ x2b
f2b

for II. The compatibility condition for the rigid coupling remains as

x2b � x2a ¼ 0. However, the equilibrium condition is f2a þ f2b ¼ F2 because the

force is applied to the coupling coordinate.

To determine H22 ¼ X2

F2
, we begin by writing the component displacements.

For I, the displacements are:

x1 ¼ h12af2a and x2a ¼ h2a2af2a: (9.10)

f2b f2a

x2b x2a

F2

X2 

II I

III

X1 

x1 

Fig. 9.3 Example showing

rigid coupling of

components I and II to form

assembly III. The force F2 is

applied to the assembly at

coordinate X2 in order to

determine H22 and H12
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For II, we have x2b ¼ h2b2bf2b. Substitution in the compatibility condition gives:

h2b2bf2b � h2a2af2a ¼ 0: (9.11)

We apply the equilibrium condition, f2a ¼ F2 � f2b, to eliminate f2a in Eq. 9.11.

h2b2bf2b � h2a2aF2 þ h2a2af2b ¼ 0 (9.12)

This enables us to group terms and solve for f2b. We find that f2b ¼ h2a2a þð
h2b2bÞ�1h2a2aF2. Again using the equilibrium condition, we can write f2a ¼
1� h2a2a þ h2b2bð Þ�1h2a2a

� �
F2. Equation 9.13 gives the desired H22 expression.

H22 ¼ X2

F2

¼ x2a
F2

¼ h2a2af2a
F2

¼
h2a2a 1� h2a2aþ h2b2bð Þ�1h2a2a

� �
F2

F2

H22 ¼ h2a2aF2 � h2a2a h2a2aþ h2b2bð Þ�1h2a2aF2

F2

¼ h2a2a� h2a2a h2a2aþ h2b2bð Þ�1h2a2a

(9.13)

We use f2a to find the cross receptance H12 as well. See Eq. 9.14.

H12 ¼ X1

F2

¼ x1
F2

¼ h12af2a
F2

¼
h12a 1� h2a2a þ h2b2bð Þ�1h2a2a

� �
F2

F2

H12 ¼ h12a � h12a h2a2a þ h2b2bð Þ�1h2a2a

(9.14)

9.3 Two-Component Flexible Coupling

Let’s continue with the system shown in Fig. 9.1, but now couple the two

components through a linear spring, described by the constant k. This case is

depicted in Fig. 9.4 and represents the situation where the connection between

two components is not rigid. As an example, perhaps the joint is a bolted connection

where the elastic deformation of the bolts due to an external harmonic force acts as

a spring that couples the two components; see Fig. 9.5. In Fig. 9.4 the component

receptances are h1a1a ¼ x1a
f1a

and h1b1b ¼ x1b
f1b

and the equilibrium condition is

f1a þ f1b ¼ F1a. These are analogous to the rigid coupling case. However, the

compatibility condition now becomes:

k x1b � x1að Þ ¼ �f1b: (9.15)

for the flexible coupling case. This relationship follows Hooke’s Law, F ¼ kx.
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IN A NUTSHELL We recognize that components cannot, in

practice, be rigidly connected. Sometimes rigid connection is a good

approximation, but when it is not, connection through a spring is

often more accurate.

Because the component and assembly coordinates are coincident, we have

that x2a ¼ X2a; and x2b ¼ X2b. To determine H1a1a ¼ X1a

F1a
, we first substitute the

component displacements in the compatibility condition. See Eq. 9.16.

k h1b1bf1b � h1a1af1að Þ ¼ �f1b (9.16)

Using the equilibrium condition, f1a ¼ F1a � f1b, we can eliminate f1a to obtain

the equation for f1b.

f1b f1a

x1b
x1a

F1a

X1a

II I

k

X1b

III

Fig. 9.4 Flexible coupling of components I and II to form assembly III. The force F1a is applied to

the assembly at coordinate X1a in order to determine H1a1a and H1b1a

Harmonic
force applied to
the assembly 

Elastic deformation of the
bolts gives relative motion
at the connection. 

Fig. 9.5 A bolted connection where the elastic strain in the bolts due to the applied harmonic force

effectively serves as a spring that connects the two components
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k h1b1bf1b � h1a1aF1a þ h1a1af1bð Þ ¼ �f1b

kh1b1bf1b � kh1a1aF1a þ kh1a1af1b ¼ �f1b

h1a1a þ h1b1b þ 1

k

� �
f1b ¼ h1a1aF1a

f1b ¼ h1a1a þ h1b1b þ 1

k

� ��1

h1a1aF1a ð9:17Þ

Using f1b and the equilibrium condition, we find that f1a ¼ 1� h1a1aþðð
h1b1b þ 1

kÞ�1h1a1aÞF1a. Substitution then yields the direct assembly receptance

H1a1a,, as shown in Eq. 9.18. We can see that this equation simplifies to Eq. 9.4

as k approaches infinity (rigid connection).

H1a1a ¼ X1a

F1a
¼ x1a

F1a
¼ h1a1af1a

F1a
¼

h1a1a 1� h1a1a þ h1b1b þ 1

k

� ��1

h1a1a

 !
F1a

F1a

H1a1a ¼ h1a1a � h1a1a h1a1a þ h1b1b þ 1

k

� ��1

h1a1a ð9:18Þ

The cross receptance due to the force F1a is provided in Eq. 9.19.

H1b1a ¼ X1b

F1a
¼ x1b

F1a
¼ h1b1bf1b

F1a
¼

h1b1b h1a1a þ h1b1b þ 1

k

� ��1

h1a1aF1a

F1a

H1b1a ¼ h1b1b h1a1a þ h1b1b þ 1

k

� ��1

h1a1a ð9:19Þ

As shown in Fig. 9.6, we can alternately apply the assembly force to coordi-

nate X1b. The component receptances and displacements are unchanged, but the

f1b f1a

x1b x1a

F1b

X1a

II I

k

X1b

III

Fig. 9.6 Flexible coupling of

components I and II to form

assembly III. The force F1b is

applied to the assembly at

coordinate X1b in order to

determine H1b1b and H1a1b
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equilibrium condition is f1a þ f1b ¼ F1b. Similarly, we modify the compatibility

condition to be:

k x1a � x1bð Þ ¼ �f1a: (9.20)

Substitution for the component displacements and f1b (from the equilibrium

condition) yields the expression for f1a.

k h1a1af1a � h1b1bF1b þ h1b1bf1að Þ ¼ �f1a

kh1a1af1a � kh1b1bF1b þ kh1b1bf1a ¼ �f1a

h1a1a þ h1b1b þ 1

k

� �
f1a ¼ h1b1bF1b

f1a ¼ h1a1a þ h1b1b þ 1

k

� ��1

h1b1bF1b ð9:21Þ

Again applying the equilibrium condition, f1b ¼ F1b � f1a, we obtain

f1b ¼ 1� h1a1a þ h1b1b þ 1
k

� ��1
h1b1b

� �
F1b. Substitution then gives the assembly

direct and cross receptances due to F1b.

H1b1b ¼ X1b

F1b
¼ x1b

F1b
¼ h1b1bf1b

F1b
¼

h1b1b 1� h1a1a þ h1b1b þ 1

k

� ��1

h1b1b

 !
F1b

F1b

H1b1b ¼ h1b1b � h1b1b h1a1a þ h1b1b þ 1

k

� ��1

h1b1b ð9:22Þ

H1a1b ¼ X1a

F1b
¼ x1a

F1b
¼ h1a1af1a

F1b
¼

h1a1a h1a1a þ h1b1b þ 1

k

� ��1

h1b1bF1b

F1b

H1a1b ¼ h1a1a h1a1a þ h1b1b þ 1

k

� ��1

h1b1b ð9:23Þ

Similar to the rigid connection example depicted in Fig. 9.2, we can again

add another coordinate, not located at the coupling location, and apply the

external force at that point. See Fig. 9.7. The component displacements are again

x1 ¼ h11f1 þ h12af2a and x2a ¼ h2a1f1 þ h2a2af2a for substructure I and x2b ¼ h2b2bf2b
for substructure II. The equilibrium conditions are f2a þ f2b ¼ 0 and f1 ¼ F1.

The compatibility condition is:

k x2b � x2að Þ ¼ �f2b: (9.24)
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As before, the component and assembly coordinates are coincident, so we have

that x1 ¼ X1, x2a ¼ X2a, and x2b ¼ X2b. To determine H11 ¼ X1

F1
, we first substitute

the component displacements in the compatibility condition. See Eq. 9.25.

k h2b2bf2b � h2a1f1 � h2a2af2að Þ ¼ �f2b (9.25)

Using the equilibrium conditions, we can eliminate f2a and replace f1 with F1 to

obtain the equation for f2b.

k h2b2bf2a � h2a1F1 þ h2a2af2bð Þ ¼ �f2b

kh2b2bf2b � kh2a1F1 þ kh2a2af2b ¼ �f2b

h2a2a þ h2b2b þ 1

k

� �
f2b ¼ h2a1F1

f2b ¼ h2a2a þ h2b2b þ 1

k

� ��1

h2a1F1 ð9:26Þ

Applying the equilibrium condition f2a ¼ �f2b, we obtain:

f2a ¼ � h2a2a þ h2b2b þ 1

k

� ��1

h2a1F1: (9.27)

This enables us to write the direct and cross receptances as shown in Eqs. 9.28

and 9.29, respectively. We note that these equations simplify to the rigid coupling

results provided in Eqs. 9.8 and 9.9 as k approaches infinity. The assembly cross

receptance at coordinate X2b is given by Eq. 9.30.

H11 ¼ X1

F1

¼ x1
F1

¼ h11f1 þ h12af2a
F1

¼ h11f1 � h12a h2a2a þ h2b2b þ 1
k

� ��1
h2a1F1

F1

H11 ¼
h11F1 � h12a h2a2a þ h2b2b þ 1

k

� ��1
h2a1F1

F1

¼ h11 � h12a h2a2a þ h2b2b þ 1

k

� ��1

h2a1

(9.28)

f2b f2a

x2b x2a

F1

X2a

II I

X1 

x1 

f1

k

X2b

III

Fig. 9.7 Flexible coupling of

components I and II to form

assembly III. The force F1 is

applied to the assembly at

coordinate X1 in order to

determine H11, H2a1, and H2b1
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H2a1 ¼ X2a

F1

¼ x2a
F1

¼ h2a1f1 þ h2a2af2a
F1

¼
h2a1F1 � h2a2a h2a2a þ h2b2b þ 1

k

� ��1

h2a1F1

F1

H2a1 ¼ h2a1 � h2a2a h2a2a þ h2b2b þ 1

k

� ��1

h2a1

(9.29)

H2b1 ¼ X2b

F1

¼ x2b
F1

¼ h2b2bf2b
F1

¼
h2b2b h2a2a þ h2b2b þ 1

k

� ��1

h2a1F1

F1

H2b1 ¼ h2b2b h2a2a þ h2b2b þ 1

k

� ��1

h2a1 ð9:30Þ

Let’s now apply the external force, F2a, to coordinate X2a as shown in Fig. 9.8

in order to determine the assembly receptances H2a2a, H2b2a, and H12a. The compo-

nent displacements are x1 ¼ h12af2a and x2a ¼ h2a2af2a for substructure I and x2b ¼
h2b2bf2b for substructure II. The equilibrium condition is f2a þ f2b ¼ F2a and the

compatibility condition is:

k x2b � x2að Þ ¼ �f2b: (9.31)

We first determine the force f2b by substituting the component displacements in

Eq. 9.31 and replacing f2a with F2a � f2b.

k h2b2bf2b � h2a2aF2a þ h2a2af2bð Þ ¼ �f2b

kh2b2bf2b � kh2a2aF2a þ kh2a2af2b ¼ �f2b

h2a2a þ h2b2b þ 1

k

� �
f2b ¼ h2a2aF2a

f2b ¼ h2a2a þ h2b2b þ 1

k

� ��1

h2a2aF2a ð9:32Þ

f2b f2a

x2b x2a

F2a

X2a

II I

X1 

x1

k

X2b

III

Fig. 9.8 Flexible coupling of

components I and II to form

assembly III. The force F2a is

applied to the assembly at

coordinate X2a in order to

determine H2a2a, H2b2a,

and H12a
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Again using the equilibrium condition we find the equation for f2a.

f2a ¼ F2a � f2b ¼ 1� h2a2a þ h2b2b þ 1

k

� ��1

h2a2a

 !
F2a (9.33)

The direct and cross receptances for this situation (depicted in Fig. 9.8) are

provided in Eqs. 9.34 through 9.36.

H2a2a ¼ X2a

F2a
¼ x2a

F2a
¼ h2a2af2a

F2a
¼

h2a2a 1� h2a2a þ h2b2b þ 1

k

� ��1

h2a2a

 !
F2a

F2a

H2a2a ¼ h2a2a � h2a2a h2a2a þ h2b2b þ 1

k

� ��1

h2a2a ð9:34Þ

H2b2a ¼ X2b

F2a
¼ x2b

F2a
¼ h2b2bf2b

F2b
¼

h2b2b h2a2a þ h2b2b þ 1

k

� ��1

h2a2aF2a

F2a

H2b2a ¼ h2b2b h2a2a þ h2b2b þ 1

k

� ��1

h2a2a ð9:35Þ

H12a ¼ X1

F2a
¼ x1

F2a
¼ h12af2a

F2a
¼

h12a 1� h2a2a þ h2b2b þ 1

k

� ��1

h2a2a

 !
F2a

F2a

H12a ¼ h12a � h12a h2a2a þ h2b2b þ 1

k

� ��1

h2a2a ð9:36Þ

IN A NUTSHELL While these computations are straightforward,

they are more complicated than the rigid connection case. Increased

accuracy often comes at the expense of increased computational

complexity. The essence of engineering is to determine the required

accuracy of the measurement/model/desired outcome and

proceeding accordingly.

Our final scenario for the two-component flexible coupling is shown in Fig. 9.9.

Here, we apply the external force F2b to coordinate X2b to obtain the direct and

cross-assembly receptances H2b2b, H2a2b, and H12b. The component displacements

are the same as the previous case: x1 ¼ h12af2a and x2a ¼ h2a2af2a for substructure I
and x2b ¼ h2b2bf2b for substructure II. However, the equilibrium condition is

modified to be f2a þ f2b ¼ F2b and the compatibility condition is rewritten as:

k x2a � x2bð Þ ¼ �f2a: (9.37)
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We find f2a by substituting the component displacements in Eq. 9.37 and

replacing f2b with F2a � f2a.

k h2a2af2a � h2b2bF2b þ h2b2bf2að Þ ¼ �f2a

kh2a2af2a � kh2b2bF2b þ kh2b2bf2a ¼ �f2a

h2a2a þ h2b2b þ 1

k

� �
f2a ¼ h2b2bF2b

f2a ¼ h2a2a þ h2b2b þ 1

k

� ��1

h2b2bF2b ð9:38Þ

Again using the equilibrium condition we find the equation for f2b.

f2b ¼ F2b � f2a ¼ 1� h2a2a þ h2b2b þ 1

k

� ��1

h2b2b

 !
F2b (9.39)

The direct and cross receptances for the case shown in Fig. 9.9 are given in

Eqs. 9.40 through 9.42.

H2b2b ¼ X2b

F2b
¼ x2b

F2b
¼ h2b2bf2b

F2b
¼

h2b2b 1� h2a2a þ h2b2b þ 1

k

� ��1

h2b2b

 !
F2b

F2b

H2b2b ¼ h2b2b � h2b2b h2a2a þ h2b2b þ 1

k

� ��1

h2b2b ð9:40Þ

H2a2b ¼ X2a

F2b
¼ x2a

F2b
¼ h2a2af2a

F2b
¼

h2a2a h2a2a þ h2b2b þ 1

k

� ��1

h2b2bF2b

F2b

H2a2b ¼ h2a2a h2a2a þ h2b2b þ 1

k

� ��1

h2b2b ð9:41Þ

f2b f2a

x2b x2a

F2b

X2a

II I

X1

x1 

k

X2b

III

Fig. 9.9 Flexible coupling of

components I and II to form

assembly III. The force F2b is

applied to the assembly at

coordinate X2b in order to

determine H2b2b, H2a2b,

and H12b

9.3 Two-Component Flexible Coupling 333



www.manaraa.com

H12b ¼ X1

F2b
¼ x1

F2b
¼ h12af2a

F2a
¼

h12a h2a2a þ h2b2b þ 1

k

� ��1

h2b2bF2b

F2b

H12b ¼ h12a h2a2a þ h2b2b þ 1

k

� ��1

h2b2b ð9:42Þ

9.4 Two-Component Flexible-Damped Coupling

As we discussed in Sect. 1.3, damping is always present in mechanical systems.

Therefore, as a final step in our receptance coupling of components I and II to

predict the assembly III response, we can expand the model in Fig. 9.7 to include

viscous damping at the coupling interface. See Fig. 9.10. If we again consider the

bolted connection in Fig. 9.5, the elastic deflection of the bolts could cause rubbing

between the bolts and their mating surfaces. This would lead to energy dissipation

that we could model as viscous damping.

The expressions for the component displacements and equilibrium conditions

remain unchanged relative to the flexible coupling derivation when we add

damping. However, the compatibility condition is now:

k x2b � x2að Þ þ ioc x2b � x2að Þ ¼ �f2b; (9.43)

where we have assumed harmonic motion so that the velocity-dependent damping

forces can be expressed in the form iocx. Equation 9.43 can be rewritten as:

k þ iocð Þ x2b � x2að Þ ¼ �f2b: (9.44)

f2b f2a

x2b x2a

F1

X2a

II I

X1 

x1

f1

k
X2b

III c

Fig. 9.10 Viscously damped, flexible coupling of components I and II to form assembly III. As

with the flexible coupling case, the force F1 is applied to the assembly at coordinate X1 in order to

determine H11, H2a1, and H2b1
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If we substitute the complex, frequency-dependent variable k0 for k þ iocð Þ, then
we see that the compatibility equation takes the same form as shown in Eq. 9.24.

Therefore, we can simply replace k in Eq. 9.28with k0 to obtain Eq. 9.45. This defines
the direct FRF at coordinate X1 on assembly III in Fig. 9.10. The same substitution

can be made in the other assembly receptances derived for the two-component

flexible coupling in order to obtain the two component flexible-damped coupling

results.

H11 ¼ h11 � h12a h2a2a þ h2b2b þ 1

k0

� ��1

h2a1 (9.45)

Before proceeding with a numerical example in the next section, we present

Table 9.1 which summarizes the receptance coupling equations developed in the

previous sections.

Table 9.1 Direct and cross receptances for two component coupling. The connection type is

either rigid, R, or flexible, F. The receptance type is either direct, D, or cross, C. The corresponding

figure and equation numbers are also included

Component

coordinates Receptances

R/F I II D/C Figures Equations

R x1a x1b D H11 ¼ h1a1a � h1a1a h1a1a þ h1b1bð Þ�1h1a1a 9.1 9.4

R x1, x2a x2b D H11 ¼ h11 � h12a h2a2a þ h2b2bð Þ�1h2a1 9.2 9.8

C H21 ¼ h2a1 � h2a2a h2a2a þ h2b2bð Þ�1h2a1 9.9

D H22 ¼ h2a2a � h2a2a h2a2a þ h2b2bð Þ�1h2a2a 9.3 9.13

C H12 ¼ h12a � h12a h2a2a þ h2b2bð Þ�1h2a2a 9.14

F x1a x1b D H1a1a ¼ h1a1a � h1a1a h1a1a þ h1b1b þ 1
k

� ��1
h1a1a 9.4 9.18

C H1b1a ¼ h1b1b h1a1a þ h1b1b þ 1
k

� ��1
h1a1a 9.19

D H1b1b ¼ h1b1b � h1b1b h1a1a þ h1b1b þ 1
k

� ��1
h1b1b 9.6 9.22

C H1a1b ¼ h1a1a h1a1a þ h1b1b þ 1
k

� ��1
h1b1b 9.23

F x1, x2a x2b D H11 ¼ h11 � h12a h2a2a þ h2b2b þ 1
k

� ��1
h2a1 9.7 9.28

C H2a1 ¼ h2a1 � h2a2a h2a2a þ h2b2b þ 1
k

� ��1
h2a1 9.29

C H2b1 ¼ h2b2b h2a2a þ h2b2b þ 1
k

� ��1
h2a1 9.30

D H2a2a ¼ h2a2a � h2a2a h2a2a þ h2b2b þ 1
k

� ��1
h2a2a 9.8 9.34

C H2b2a ¼ h2b2b h2a2a þ h2b2b þ 1
k

� ��1
h2a2a 9.35

C H12a ¼ h12a � h12a h2a2a þ h2b2b þ 1
k

� ��1
h2a2a 9.36

D H2b2b ¼ h2b2b � h2b2b h2a2a þ h2b2b þ 1
k

� ��1
h2b2b 9.9 9.40

C H2a2b ¼ h2a2a h2a2a þ h2b2b þ 1
k

� ��1
h2b2b 9.41

C H12b ¼ h12a h2a2a þ h2b2b þ 1
k

� ��1
h2b2b 9.42
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9.5 Comparison of Assembly Modeling Techniques

Let’s now complete an example where we compare receptance coupling to the

modal analysis and complex matrix inversion methods we discussed in Chap. 5.

As shown in Fig. 9.11, two single degree of freedom spring–mass–damper systems,

I and II, are to be connected using the spring, kc, to form the new two degree of

freedom assembly, III. The assembled system’s equations of motion are determined

using the appropriate free body diagrams. The matrix representation of these

equations, after substituting the assumed harmonic form of the solution, is provided

in Eq. 9.46. This equation takes the form:

s2 m½ � þ s c½ � þ k½ �� �
~X
� 	

est ¼ ~F
� 	

est;

where we have used the Laplace variable s to represent the product io and [m], [c],
and [k] are the assembly’s lumped parameter mass, damping, and stiffness matrices

in local coordinates, respectively.

s2
m1 0

0 m2


 �
þ s

c1 0

0 c2


 �
þ k1 þ kc �kc

�kc k2 þ kc


 �� �
X1a

X1b

� 
¼ 0

F1b

� 

m1s
2 þ c1sþ k1 þ kcð Þ �kc

�kc m2s
2 þ c2sþ k2 þ kcð Þ


 �
X1a

X1b

� 
¼ 0

F1b

� 
(9.46)

f1b

f1a

x1b

X1b

x1a

X1a

II I

k2 

k2 

c2

m2

k1 

c1

m1

F1b

m2 m1

kc

III

c2

k1

c1

Fig. 9.11 Flexible coupling of spring–mass–damper systems I and II to form the two degree of

freedom assembly III
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9.5.1 Modal Analysis

We can use the equations of motion shown in Eq. 9.46 to find the modal solution

for the assembled system. If we assume that proportional damping exists (i.e.,

c½ � ¼ a m½ � þ b k½ �, where a and b are real numbers), damping can be neglected

in the modal solution. Note that this solution is also independent of the external

force, F1b. We write the characteristic equation for this system as shown in Eq. 9.47.

The quadratic roots of this fourth order equation, s1
2 and s2

2, give the two

eigenvalues (s1
2 ¼ �on1

2 and s2
2 ¼ �on2

2, where on1 < on2) for the two degree

of freedom system.

m1s
2 þ k1 þ kcð Þ� �

m2s
2 þ k2 þ kcð Þ� �� kc

2 ¼ 0

m1m2s
4 þ m1 k2 þ kcð Þ þ m2 k1 þ kcð Þð Þs2 þ k1 þ kcð Þ k2 þ kcð Þ � kc

2 ¼ 0 ð9:47Þ

Substitution of these eigenvalues into either of the original equations of motion,

again neglecting damping and the external force, yields the eigenvectors (mode

shapes). Note that the eigenvectors must be normalized to the force location

(coordinate X1b in this case). Selecting the top equation from Eq. 9.46, for example,

gives:

X1a

X1b
¼ kc

m1s2 þ k1 þ kcð Þ (9.48)

The mass, damping, and stiffness matrices are diagonalized using the modal

matrix (composed of columns of the eigenvectors), P, defined in Eq. 9.49.

P ¼
X1a

X1b
s1

2
� � X1a

X1b
s2

2
� �

1 1

" #
(9.49)

Specifically, we have that:

mq

� � ¼ P½ �T m½ � P½ � ¼ mq1 0

0 mq2


 �
;

cq
� � ¼ P½ �T c½ � P½ � ¼ cq1 0

0 cq2


 �
; and

kq
� � ¼ P½ �T k½ � P½ � ¼ kq1 0

0 kq2


 �
:

Based on these modal mass, damping, and stiffness values, we calculate the

associated damping ratios, zq1;2 ¼ cq1;2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kq1;2mq1;2

p . The modal solution for the direct FRF
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at coordinate X1b of the assembled system is then expressed as shown in Eq. 9.50,

where r1;2 ¼ o
on1;2

. As we discussed in Chap. 5, the direct FRF is the sum of the

modal contributions.

H1b1b ¼ X1b

F1b
¼ 1

kq1

1� r1
2ð Þ � i 2zq1r1

� �
1� r12ð Þ2 þ 2zq1r1

� �2
 !

þ 1

kq2

1� r2
2ð Þ � i 2zq2r2

� �
1� r22ð Þ2 þ 2zq2r2

� �2
 !

(9.50)

9.5.2 Complex Matrix Inversion

Equation 9.46 can be compactly written as A½ � ~X
� 	 ¼ ~F

� 	
. As shown in Sect. 5.2,

complex matrix inversion is carried out using ~X
� 	

~F
� 	�1 ¼ A½ ��1

to determine the

assembly’s direct and cross FRFs; it is applied when the damping may not be

proportional. The inverted A½ � matrix for this two-degree-of-freedom example is:

A½ ��1 ¼
a22 �a12
�a21 a11


 �

a11 � a22 � a12 � a21

¼
�o2m2 þ ioc2 þ k2 þ kcð Þ kc

kc �o2m1 þ ioc1 þ k1 þ kcð Þ

 �

�o2m1 þ ioc1 þ k1 þ kcð Þð Þ �o2m2 þ ioc2 þ k2 þ kcð Þð Þ � kc
2
;

where we have replaced s with io relative to Eq. 9.46. The individual terms in the

inverted A½ � matrix are:

A½ ��1 ¼
X1a

F1a

X1a

F1b

X1b

F1a

X1b

F1b

2
664

3
775 ¼ H1a1a H1a1b

H1b1a H1b1b


 �
: (9.51)

9.5.3 Receptance Coupling

This case is the same as the two-component flexible coupling example shown in

Fig. 9.6. Replacing k with kc in Eq. 9.22, we obtain Eq. 9.52.
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X1b

F1b
¼ x1b

F1b
¼ h1b1bf1b

F1b
¼

h1b1b 1� h1a1a þ h1b1b þ 1

kc

� ��1

h1b1b

 !
F1b

F1b

X1b

F1b
¼ H1b1b ¼ h1b1b � h1b1b h1a1a þ h1b1b þ 1

kc

� ��1

h1b1b ð9:52Þ

To compare the three methods, we apply the mass, damping, and stiffness values

shown in Table 9.2 to the model displayed in Fig. 9.11. We note that proportional

damping exists (a ¼ 0 and b ¼ 1� 10�4) for the selected system, so the modal

approach may be applied. The code used to produce Fig. 9.13, which displays both

the component receptances and the assembly receptance computed using the three

methods, is provided in MATLAB® MOJO 9.1. The frequency-dependent differences

between the complex matrix inversion result, which was obtained through vector

manipulations by calculating the H1b1b result directly:

H1b1b ¼ �o2m1 þ ioc1 þ k1 þ kcð Þ
�o2m1 þ ioc1 þ k1 þ kcð Þð Þ �o2m2 þ ioc2 þ k2 þ kcð Þð Þ � kc

2
;

and the modal and receptance coupling method results are displayed in Fig. 9.14.

It is seen that the errors introduced by the modal method (top) are approximately

4� 1013 times greater than the errors associated with the receptance technique

(bottom). The differences between the three techniques are introduced by numerical

f1b f1a

x1b x1a

F1b

X1a

II I

kc

X1b

III

Fig. 9.12 Receptance-

coupling representation of

joining spring–mass–damper

systems I and II to form the

two degree of freedom

assembly III

Table 9.2 Mass, damping,

and stiffness values for the

two degree of freedom system

in Fig. 9.11

Parameter Value

m1 3 kg

c1 200 N-s/m

k1 2� 106 N=m

m2 2 kg

c2 100 N-s/m

k2 1� 106 N=m

kc 5� 105 N=m
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round-off errors in the mathematical manipulations. However, the improved

numerical accuracy obtained with receptance coupling (vector manipulations)

over modal coupling (matrix manipulations) is another benefit of the receptance

coupling approach.
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–15
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Fig. 9.13 Comparison of three methods for H1b1b calculation. It is seen that the modal analysis,

complex matrix inversion, and receptance coupling methods nominally agree (superimposed solid
lines). The component receptances, h1a1a and h1b1b, are also shown
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Fig. 9.14 Real and imaginary parts of the difference between complex matrix inversion and

modal analysis (top) and real and imaginary parts of difference between complex matrix inversion

and receptance coupling (bottom). Receptance coupling agrees more closely
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IN A NUTSHELL Our comparison presumes that the receptances

are accurately known. If they are obtained from measurements, this

may not be the case. Measured FRFs are only known with finite

frequency and amplitude resolution. Large modes require more

digital bits to represent them and small modes may fall below the

amplitude resolution (and not appear in the measurement). For high measurement

bandwidths with reduced frequency resolution, modes with very low damping (and

a corresponding narrow frequency range) may be misrepresented as well.

MATLAB
®

 MOJO 9.1 
% matlab_mojo_9_1.m

clc
clear all
close all

% Define parameters in local coordinates
m1 = 3;             % kg
c1 = 200;           % N-s/m
k1 = 2e6;           % N/m

m2 = 2;             % kg
c2 = 100;           % N-s/m
k2 = 1e6;           % N/m

kc = 5e5;           % N/m

% Define I and II FRFs
w = (0:0.1:300)'*2*pi; % frequency, rad/s
FRF_I = 1./(-w.^2*m1 + 1i*w*c1 + k1);
FRF_II = 1./(-w.^2*m2 + 1i*w*c2 + k2);

% Receptance coupling
FRF_III_rc = FRF_II - FRF_II./(FRF_I + FRF_II + 1/k c).*FRF_II;

% Modal analysis
s_squared = roots([(m1*m2) (m1*(k2+kc)+m2*(k1+kc)) ((k1+kc)*(k2+kc)-kc^2)]);
s1_squared = s_squared(1);
s2_squared = s_squared(2);
% Order natural frequencies so that wn1 < wn2
if s1_squared < s2_squared
    temp = s1_squared;
    s1_squared = s2_squared;
    s2_squared = temp;
end
wn1 = sqrt(-s1_squared);
wn2 = sqrt(-s2_squared);

p1 = kc/(m1*s1_squared + (k1+kc));
p2 = kc/(m1*s2_squared + (k1+kc));

% Local matrices
m = [m1 0; 0 m2];
c = [c1 0; 0 c2];
k = [k1+kc -kc; -kc k2+kc];
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mq2 = mq(2,2);
cq1 = cq(1,1);
cq2 = cq(2,2);
kq1 = kq(1,1);
kq2 = kq(2,2);

zetaq1 = cq1/(2*sqrt(kq1*mq1));
zetaq2 = cq2/(2*sqrt(kq2*mq2));

r1 = w/wn1;
r2 = w/wn2;

FRF_III_modal = 1/kq1*((1-r1.^2) - 1i*(2*zetaq1*r1))./((1-r1.^2).^2 + 
(2*zetaq1*r1).^2) + 1/kq2*((1-r2.^2) - 1i*(2*zetaq2*r2))./((1-r2.^2).^2 + 
(2*zetaq2*r2).^2);

% Complex matrix inversion
FRF_III_inversion = (-w.^2*m1 + 1i*w*c1 + k1 + kc)./((-w.^2*m1 + 1i*w*c1 + k1 
+ kc).*(-w.^2*m2 + 1i*w*c2 + k2 + kc) - kc^2);

figure(1)
subplot(211)
plot(w/2/pi, real(FRF_I), 'k:', w/2/pi, real(FRF_II), 'k-.', w/2/pi, 
real(FRF_III_rc), 'k', w/2/pi, real(FRF_III_modal), 'k', w/2/pi, 
real(FRF_III_inversion), 'k')
ylim([-8e-6 9e-6])
set(gca,'FontSize', 14)
ylabel('Real (m/N)')
subplot(212)
plot(w/2/pi, imag(FRF_I), 'k:', w/2/pi, imag(FRF_II), 'k-.', w/2/pi, 
imag(FRF_III_rc), 'k', w/2/pi, imag(FRF_III_modal), 'k', w/2/pi, 
imag(FRF_III_inversion), 'k')
ylim([-16e-6 16e-7])
set(gca,'FontSize', 14)
xlabel('Frequency (Hz)')
ylabel('Imag (m/N)')

% Calculate differences
diff_modal = FRF_III_inversion - FRF_III_modal;
diff_rc = FRF_III_inversion - FRF_III_rc;

figure(2)
subplot(211)
plot(w/2/pi, real(diff_modal), 'k', w/2/pi, imag(diff_modal), 'k:')
legend('Re', 'Im')
ylim([-2e-7 2e-7])
set(gca,'FontSize', 14)
ylabel('Modal errors (m/N)')
subplot(212)
plot(w/2/pi, real(diff_rc), 'k', w/2/pi, imag(diff_rc), 'b:')
legend('Re', 'Im')
ylim([-6e-21 4e-21])
set(gca,'FontSize', 14)
xlabel('Frequency (Hz)')
ylabel('Receptance errors (m/N)')

% Modal matrices
P = [p1 p2; 1 1];
mq = P'*m*P;
cq = P'*c*P;
kq = P'*k*P;

mq1 = mq(1,1);
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9.6 Advanced Receptance Coupling

In the previous sections we only considered transverse deflections, xi and Xi, for

the components and assembly due to internal and external forces, fj and Fj.

However, as we saw in Sect. 8.5 we must also consider rotations about lines

perpendicular to the beam axis, yi and Yi, and bending couples, mj and Mj, to

completely describe the transverse dynamic behavior of beams.2 To begin this

discussion, let’s consider the solid cylinder-prismatic cantilever beam assembly

shown in Fig. 9.15. To determine the assembly dynamics, all four bending

receptances must be included in the component descriptions (i.e., displacement-

to-force, hij, displacement-to-couple, lij, rotation-to-force, nij, and rotation-to-

couple, pij).
Let’s now summarize the steps required to predict the Fig. 9.15 assembly

receptances.

1. Define the components and coordinates for the model. In this example, we can

select two components: a prismatic beam with fixed-free (or cantilever) bound-

ary conditions and a cylinder with free-free (or unsupported) boundary

conditions; see Fig. 9.16.

2. Determine the component receptances. We can use either measurements or

models. For the models, an elegant choice is the closed-form receptances for

flexural vibrations of uniform Euler–Bernoulli beams with free, fixed, sliding,

2We will not consider axial or torsional vibrations in this analysis.

X1

Θ1

X2

Θ2

Fig. 9.15 Rigid coupling of

solid cylinder and prismatic

beam to form a cantilevered

assembly

x1

x2b

q2b q2a
q1

x2a

Fig. 9.16 Solid cylinder and

prismatic beam components

used to form cantilevered

assembly
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and pinned boundary conditions that we discussed in Chap. 8 (Bishop and

Johnson 1960). Of course, the Timoshenko beam model (Weaver et al. 1990)

may also be applied when increased accuracy is required, but we will leave the

details of this analysis to a more advanced course. For measurements, we can

follow the procedures outlined in Chap. 7.

3. Based on the model from step 1, express the assembly receptances as a function

of the component receptances. As demonstrated in Sects. 9.2 through 9.4, we

determine the assembly receptances using the component displacements/

rotations, equilibrium conditions, and compatibility conditions.

We begin the analysis of the system shown in Figs. 9.15 and 9.16 by writing the

component receptances. Note that we have placed coordinates at the prediction

location (1) and coupling locations (2a and 2b) on the two components. For the

cylinder, we have the following direct receptances at the coordinate 1 end:

h11 ¼ x1
f1

l11 ¼ x1
m1

n11 ¼ y1
f1

p11 ¼ y1
m1

: (9.53)

The corresponding cross receptances at the same location are:

h12a ¼ x1
f2a

l12a ¼ x1
m2a

n12a ¼ y1
f2a

p12a ¼ y1
m2a

: (9.54)

At coordinate 2a on the cylinder, the direct and cross receptances are written as

shown in Eqs. 9.55 and 9.56, respectively.

h2a2a ¼ x2a
f2a

l2a2a ¼ x2a
m2a

n2a2a ¼ y2a
f2a

p2a2a ¼ y2a
m2a

(9.55)

h2a1 ¼ x2a
f1

l2a1 ¼ x2a
m1

n2a1 ¼ y2a
f1

p2a1 ¼ y2a
m1

(9.56)

Similarly, for the prismatic cantilever beam, the direct receptances at the

coupling location 2b are described by Eq. 9.57.

h2b2b ¼ x2b
f2b

l2b2b ¼ x2b
m2b

n2b2b ¼ y2b
f2b

p2b2b ¼ y2b
m2b

(9.57)

To simplify notation, the component receptances can be compactly represented

in matrix form as shown in Eqs. 9.58 through 9.61 for the cylinder and Eq. 9.62 for

the prismatic beam:

x1
y1

� 
¼ h11 l11

n11 p11


 �
f1
m1

� 
or u1f g ¼ R11½ � q1f g; (9.58)
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x2a
y2a

� 
¼ h2a2a l2a2a

n2a2a p2a2a


 �
f2a
m2a

� 
or u2af g ¼ R2a2a½ � q2af g; (9.59)

x1
y1

� 
¼ h12a l12a

n12a p12a


 �
f2a
m2a

� 
or u1f g ¼ R12a½ � q2af g; (9.60)

x2a
y2a

� 
¼ h2a1 l2a1

n2a1 p2a1


 �
f1
m1

� 
or u2af g ¼ R2a1½ � q1f g; and (9.61)

x2b
y2b

� 
¼ h2b2b l2b2b

n2b2b p2b2b


 �
f2b
m2b

� 
or u2bf g ¼ R2b2b½ � q2bf g; (9.62)

where Rij is the generalized receptance matrix that describes both translational

and rotational component behavior (Burns and Schmitz 2004, 2005; Park et al.

2003) and ui and qj are the corresponding generalized displacement/rotation and

force/couple vectors. To visualize Rij, we can think of each frequency-dependent

2�2 Rijmatrix as a page in a book where each page represents a different frequency

value. Flipping through the book from front to back scans the frequency values

from low to high through the modeled, or measured, bandwidth. Naturally,

all receptances in the coupling analysis must be based on the same frequency vector

(resolution and range).

We write the component receptances using the new notation as u1 ¼ R11q1 þ
R12aq2a and u2a ¼ R2a1q1 þ R2a2aq2a for the cylinder and u2b ¼ R2b2bq2b for the

prismatic beam. If we apply a rigid connection between the two components, the

compatibility condition is u2b � u2a ¼ 0. Additionally, if we again specify that

the component and assembly coordinates are at the same physical locations, then

we have that u1 ¼ U1; and u2a ¼ u2b ¼ U2 (due to the rigid coupling).

We can write the assembly receptances, as shown in Eq. 9.63, which again

incorporates the generalized notation:

U1

U2

� 
¼ G11 G12

G21 G22


 �
Q1

Q2

� 
(9.63)

where Ui ¼ Xi

Yi

� 
, Gij ¼ Hij Lij

Nij Pij


 �
, and Qj ¼ Fj

Mj

� 
. To determine the assem-

bly receptance at the free end of the cylinder, G11, we apply Q1 to coordinate U1 as

shown in Fig. 9.17, where the generalizedUi and ui vectors are shown schematically

as “displacements,” although we recognize that they describe both transverse

deflection and rotation. The associated equilibrium conditions are q2a þ q2b ¼ 0

and q1 ¼ Q1. By substituting the component displacements/rotations and equi-

librium conditions into the compatibility condition, we obtain the expression for

q2b shown in Eq. 9.64. The component force q2a is then determined from the

equilibrium condition q2a ¼ �q2b. The expression for G11 is given by Eq. 9.65.
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We find the corresponding cross receptance matrix, G21, in a similar manner;

see Eq. 9.66. Note that G11 and G21 comprise the first column of the receptance

matrix in Eq. 9.63.

u2b � u2a ¼ 0

R2b2bq2b � R2a1q1 � R2a2aq2a ¼ 0

R2a2a þ R2b2bð Þq2b � R2a1Q1 ¼ 0

q2b ¼ R2a2a þ R2b2bð Þ�1R2a1Q1 ð9:64Þ

G11 ¼ U1

Q1

¼ u1
Q1

¼ R11q1 þ R12aq2a
Q1

¼ R11Q1 � R12a R2a2a þ R2b2bð Þ�1R2a1Q1

Q1

G11 ¼ R11 � R12a R2a2a þ R2b2bð Þ�1R2a1 ¼
H11 L11

N11 P11


 �
ð9:65Þ

G21 ¼ U2

Q1

¼ u2a
Q1

¼ R2a1q1 þ R2a2aq2a
Q1

¼ R2a1Q1 � R2a2a R2a2a þ R2b2bð Þ�1R2a1Q1

Q1

G21 ¼ R2a1 � R2a2a R2a2a þ R2b2bð Þ�1R2a1 ¼
H21 L21

N21 P21


 �

(9.66)

To find the receptances in the second column of Eq. 9.63, we apply Q2 at U2,

as shown in Fig. 9.18. The component receptances are u1 ¼ R12aq2a and u2a ¼
R2a2aq2a for the cylinder and u2b ¼ R2b2bq2b for the prismatic beam. For the rigid

connection, the compatibility condition is again u2b � u2a ¼ 0. The equilibrium

condition is q2a þ q2b ¼ Q2. By substituting the component displacements/

U1

U2

u1

u2b u2a

Q1

q1

q2a
q2b

Fig. 9.17 Receptance-

coupling model for

determining G11 and G21.

Rigid coupling is assumed
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rotations and equilibrium condition into the compatibility condition, we obtain the

expression for q2b shown in Eq. 9.67. The component force q2a is then determined

from the equilibrium condition q2a ¼ Q2 � q2b. The expression for G22 is provided

by Eq. 9.68. We find the corresponding cross-receptance matrix, G12, in a similar

manner, as shown in Eq. 9.69.

u2b � u2a ¼ 0

R2b2bq2b � R2a2aq2a ¼ 0

R2b2bq2b � R2a2aQ2 þ R2a2aq2b ¼ 0

R2a2a þ R2b2bð Þq2b � R2a2aQ2 ¼ 0

q2b ¼ R2a2a þ R2b2bð Þ�1R2a2aQ2 ð9:67Þ

G22 ¼ U2

Q2

¼ u2a
Q2

¼ R2a2aq2a
Q2

¼
R2a2a 1� R2a2a þ R2b2bð Þ�1R2a2a

� �
Q2

Q2

G22 ¼ R2a2a � R2a2a R2a2a þ R2b2bð Þ�1R2a2a ¼
H22 L22

N22 P22


 �
ð9:68Þ

G12 ¼ U1

Q2

¼ u1
Q2

¼ R12aq2a
Q2

¼
R12a 1� R2a2a þ R2b2bð Þ�1R2a2a

� �
Q2

Q2

G12 ¼ R12a � R12a R2a2a þ R2b2bð Þ�1R2a2a ¼
H12 L12

N12 P12


 �
ð9:69Þ

U1

U2

u2b

q2b

q2a

u1

u2a

Q2

Fig. 9.18 Receptance-

coupling model for

determining G22 and G12.

Rigid coupling is assumed
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We see that the procedure to model the systems with both displacements and

rotations is analogous to the examples provided in Sects. 9.2 through 9.4. Let’s

again summarize the receptance terms in tabular form; see Table 9.3. Due to the

clear similarities to Table 9.1, we will not derive the receptances for the other two

component coupling cases. The only consideration is that for non-rigid coupling,

we replace the scalar stiffness term, 1
k , from the displacement-to-force analyses

with the matrix expression ~k
� ��1

, where:

~k
� � ¼ kxf kyf

kxm kym


 �
:

The subscripts for the stiffness matrix entries indicate their function. For exam-

ple, kyf represents resistance to rotation due to an applied force. As shown in

Eq. 9.45, these four real-valued stiffness terms are augmented by the corresponding

damping expressions if viscous damping is included at the coupling location

(Schmitz et al. 2007). The new complex, frequency-dependent stiffness matrix is:

~k0
� � ¼ kxf þ iocxf kyf þ iocyf

kxm þ iocxm kym þ iocym


 �
:

IN A NUTSHELL More information about the dynamic

behavior of a system enables improved modeling accuracy.

Measurement of rotational FRFs is more complicated than the

measurement of translational FRFs. Is it required? The answer, as in

most of engineering analyses, depends on the application. It is more

important for short, bulky components than it is for long, slender components.

Table 9.3 Direct and cross receptances for generalized two component coupling. The connection

type is rigid, R. The receptance type is direct, D, or cross, C. The figure and equation numbers are

also included. Similarities to the corresponding entries in Table 9.1 are evident

Substructure

coordinates Receptances

R/F I II D/C Figures Equations

R/F I II D/C

R u1, u2a u2b D G11 ¼ R11 � R12a R2a2a þ R2b2bð Þ�1R2a1 9.17 9.65

C G21 ¼ R2a1 � R2a2a R2a2a þ R2b2bð Þ�1R2a1 9.66

D G22 ¼ R2a2a � R2a2a R2a2a þ R2b2bð Þ�1R2a2a 9.18 9.68

C G12 ¼ R12a � R12a R2a2a þ R2b2bð Þ�1R2a2a 9.69
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9.7 Assembly Receptance Prediction

In Sect. 9.6, we provided the building blocks for assembly receptance predictions.

In this section, we will detail coupling examples to demonstrate their implementation.

9.7.1 Free-Free Beam Coupled to Rigid Support

As a test of the receptance coupling procedure, let’s couple a free-free beam to

a rigid support (i.e., a wall) to verify that it matches the fixed-free beam response

we derived in Sect. 8.3.1. As described in Sect. 9.6, we have three primary tasks

to complete in order to predict the assembly response. First, we must define

the components and coordinates for the model. Here we have two components:

a uniform beam with free-free boundary conditions and a rigid support (which

exhibits zero receptances); see Fig. 9.19. Second, we need to determine the compo-

nent receptances. We will apply the Euler–Bernoulli beam receptances provided in

Table 8.3. Third, based on the selected model, we express the assembly receptances

as a function of the component receptances, as shown in Table 9.3.

Let’s define the free-free beam to be a solid steel cylinder with a diameter

of 10 mm and a length of 125 mm. The elastic modulus is 200 GPa and the density

is 7,800 kg/m3. We will select the solid damping factor to be 0.01 for plotting

purposes, but in practice a value closer to 0.001 would be more realistic. The free-

free cylinder’s direct and cross receptance equations are provided in Table 8.3,

q2a
q1

X1

Θ1

X2

Θ2

x1

x2b

x2a

q2bFig. 9.19 Rigid coupling of a

free-free cylinder to a wall
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while the wall receptances are zero. To calculate l, we need the frequency vector o
(rad/s), cross-sectional area, A, and second moment of area, I. We will use a

frequency range of 5,000 Hz with a resolution of 0.1 Hz. The variables A and I
are defined in Eqs. 9.70 and 9.71 for the cylinder, where d is the cylinder diameter.

The displacement-to-force direct receptance for the free-free cylinder, h11, is shown
in Fig. 9.20. We see first a bending natural frequency of 2,884.9 Hz. The rigid body

behavior is exhibited as the rapid decrease in the real part as the frequency

approaches zero.

A ¼ pd2

4
(9.70)

I ¼ pd4

64
(9.71)

To rigidly couple the free-free cylinder to the wall, we apply Eq. 9.65:

G11 ¼ H11 L11
N11 P11


 �
¼ R11 � R12a R2a2a þ R2b2bð Þ�1R2a1;

where the generalized receptance matrices R11, R12a, R2a2a, and R2a1 correspond to

the free-free cylinder, and R2b2b characterizes the wall response. The code provided

in MATLAB® MOJO 9.2 is used to complete the receptance coupling procedure. The

results are displayed in Figs. 9.21 and 9.22. Figure 9.21 shows the assembly-H11

response from the G11(1,1) position (solid line). The dotted line in the figure is the
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Fig. 9.20 Free-free receptance, h11, for 10 mm diameter by 125 mm long steel cylinder
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clamped-free response, H11 ¼ �c1
l3c8

, from Table 8.3. We see that the two curves are

identical and the rigid body behavior is no longer present due to the coupling

conditions. A limited frequency range is displayed in Fig. 9.22 to enable closer

comparison of the first bending mode. However, all bending modes are included

in the Euler–Bernoulli beam receptances. The frequency range is increased in
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Fig. 9.21 Comparison of H11 receptance coupling result (solid line) and fixed-free response

(dotted) for 10 mm diameter by 125 mm long steel cylinder
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Fig. 9.22 Semi-logarithmic plot showing the first two bending modes for H11 tip receptances

obtained from: (1) rigid coupling of free-free beam to wall (solid line); and (2) fixed-free response
(dotted)

9.7 Assembly Receptance Prediction 351



www.manaraa.com

Fig. 9.23 to show the first two assembly bending modes. The vertical axis (response

magnitude) is logarithmic in this plot because the second mode magnitude is much

smaller than the first. Again, we observe exact agreement between the receptance-

coupling result (solid) and clamped-free receptance (dotted). Figure 9.23 displays

not only the two resonant peaks at 453.4 and 2,841.4 Hz, but also the antiresonance

at 1,988.1 Hz. At this frequency, the response is very small, even for large input

force magnitudes.

The rotation-to-couple free-end receptance determined from the rigid free-free

beam coupling to the wall is also calculated using the code in MATLAB® MOJO 9.2.

This G11(2,2) entry is shown in Fig. 9.23 (solid line). The fixed-free response

(dotted line) from Table 8.3, P11 ¼ c5
lc8

, again agrees with the receptance coupling

result. We also see that the first mode natural frequency matches the H11 result

(453.4 Hz), but the magnitude is quite different; note the new units of rad/(N-m).

We have already noted that the assembly cross receptances, G12 and G21, and the

direct receptances at the fixed end, G22, are zero. We can verify this by direct

application of Eqs. 9.66, 9.68, and 9.69. For the fixed end direct receptance,

Eq. 9.68 simplifies as shown in Eq. 9.72.

G22 ¼ R2a2a � R2a2a R2a2a þ R2b2bð Þ�1R2a2a

G22 ¼ R2a2a � R2a2a R2a2a þ
0 0

0 0


 �� ��1

R2a2a

G22 ¼ R2a2a � R2a2a R2a2að Þ�1R2a2a ¼ R2a2a � R2a2a ¼ 0 ð9:72Þ
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Fig. 9.23 Comparison of P11 receptance coupling result (solid line) and fixed-free response

(dotted) for 10 mm diameter by 125 mm long steel cylinder
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Similar results are obtained for the cross receptances in Eqs. 9.66 and 9.69 when

substituting R2b2b ¼ 0 0

0 0


 �
:

MATLAB
®

 MOJO 9.2 
% matlab_mojo_9_2.m

clc
clear all
close all

% Define free-free cylinder receptances
w = (1:0.1:5000)*2*pi;      % frequency, rad/s
E = 200e9;                  % elastic modulus, N/m^2
d = 10e-3;                  % diameter, m
L = 125e-3;                 % length, m
I = pi*d^4/64;              % 2nd moment of area, m^4
rho = 7800;                 % density, kg/m^3
A = pi*d^2/4;               % cross sectional area, m^2
eta = 0.01;                 % solid damping factor
EI = E*I*(1+1i*eta);        % complex stiffness, N-m^2
lambda = (w.^2*rho*A/EI).^0.25;
c1 = cos(lambda*L).*sinh(lambda*L) - sin(lambda*L).*cosh(lambda*L);
c2 = sin(lambda*L).*sinh(lambda*L);
c3 = sin(lambda*L) - sinh(lambda*L);
c4 = cos(lambda*L) - cosh(lambda*L);
c5 = cos(lambda*L).*sinh(lambda*L) + sin(lambda*L).*cosh(lambda*L);
c6 = sin(lambda*L) + sinh(lambda*L);
c7 = EI*(cos(lambda*L).*cosh(lambda*L)-1);
c8 = EI*(cos(lambda*L).*cosh(lambda*L)+1);

h11 = -c1./(lambda.^3.*c7);
l11 = c2./(lambda.^2.*c7);
n11 = l11;
p11 = c5./(lambda.*c7);

h2a2a = -c1./(lambda.^3.*c7);
l2a2a = -c2./(lambda.^2.*c7);
n2a2a = l2a2a;
p2a2a = c5./(lambda.*c7);

h12a = c3./(lambda.^3.*c7);
l12a = -c4./(lambda.^2.*c7);
n12a = c4./(lambda.^2.*c7);
p12a = c6./(lambda.*c7);

h2a1 = h12a;
l2a1 = n12a;
n2a1 = l12a;
p2a1 = p12a;

% Define wall receptances
h2b2b = zeros(1, length(w));
l2b2b = zeros(1, length(w));
n2b2b = zeros(1, length(w));
p2b2b = zeros(1, length(w));

% Calculate assembly receptances
for cnt = 1:length(w)
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    % Define generalized receptance matrices
    % Free-free cylinder
    R11 = [h11(cnt) l11(cnt); n11(cnt) p11(cnt)];
    R12a = [h12a(cnt) l12a(cnt); n12a(cnt) p12a(cnt)];
    R2a2a = [h2a2a(cnt) l2a2a(cnt); n2a2a(cnt) p2a2a(cnt)];
    R2a1 = [h2a1(cnt) l2a1(cnt); n2a1(cnt) p2a1(cnt)];

    
    % Rigid wall
    R2b2b = [h2b2b(cnt) l2b2b(cnt); n2b2b(cnt) p2b2b(cnt)];

    
    % Generalized assembly receptance matrix
    G11 = R11 - R12a/(R2a2a + R2b2b)*R2a1;

    
    % Individual terms in G11
    H11(cnt) = G11(1,1);
    L11(cnt) = G11(1,2);
    N11(cnt) = G11(2,1);
    P11(cnt) = G11(2,2);
end

% Define fixed-free cylinder receptances
H11cf = -c1./(lambda.^3.*c8);
L11cf = c2./(lambda.^2.*c8);
N11cf = L11cf;
P11cf = c5./(lambda.*c8);

figure(1)
subplot(211)
plot(w/2/pi, real(h11), 'k')
ylim([-1e-5 1e-5])
set(gca,'FontSize', 14)
ylabel('Real (m/N)')
subplot(212)
plot(w/2/pi, imag(h11), 'k')
ylim([-1.8e-5 1.8e-6])
set(gca,'FontSize', 14)
xlabel('Frequency (Hz)')
ylabel('Imag (m/N)')

figure(2)
subplot(211)
plot(w/2/pi, real(H11), 'k', w/2/pi, real(H11cf), 'r:')
axis([300 700 -3.75e-4 3.75e-4])
set(gca,'FontSize', 14)
ylabel('Real (m/N)')
subplot(212)
plot(w/2/pi, imag(H11), 'k', w/2/pi, imag(H11cf), 'r:')
axis([300 700 -7e-4 7e-5])
set(gca,'FontSize', 14)
xlabel('Frequency (Hz)')
ylabel('Imag (m/N)')

figure(3)
semilogy(w/2/pi, abs(H11), 'k', w/2/pi, abs(H11cf), 'r:')
ylim([3e-9 1e-3])
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set(gca,'FontSize', 14)
xlabel('Frequency (Hz)')
ylabel('Magnitude (m/N)')

figure(4)
subplot(211)
plot(w/2/pi, real(P11), 'k', w/2/pi, real(P11cf), 'r:')
axis([300 700 -0.045 0.045])
set(gca,'FontSize', 14)
ylabel('Real (rad/(N-m))')
subplot(212)
plot(w/2/pi, imag(P11), 'k', w/2/pi, imag(P11cf), 'r:')
axis([300 700 -0.09 0.009])
set(gca,'FontSize', 14)
xlabel('Frequency (Hz)')
ylabel('Imag (rad/(N-m))')

9.7.2 Free-Free Beam Coupled to Fixed-Free Beam

Let’s now consider the case depicted in Fig. 9.15. A 10 mm diameter by 100 mm

long steel cylinder (free-free boundary conditions) is to be rigidly coupled to a

fixed-free 50 by 50 by 200 mm long steel prismatic beam. The steel elastic modulus,

density, and solid damping factor are 200 GPa, 7,800 kg/m3, and 0.01, respectively.

(Again, we selected the solid damping value to be artificially high for display

purposes.) The analysis is the same as described in Sect. 9.7.1 except that the

R2b2b receptances are no longer zero. They are now defined, as shown in Table 8.3,

for a fixed-free beam, h2b2b ¼ �c1
l3c8

, l2b2b ¼ n2b2b ¼ c2
l2c8

, and p2b2b ¼ c5
lc8

. We will

again use a frequency range of 5,000 Hz with a resolution of 0.1 Hz to calculate l.
The variables A and I are defined in Eqs. 9.73 and 9.74 for the square prismatic

beam, where s is the side length of 50 mm. The displacement-to-force direct

receptance for the free-free cylinder, h11, is shown in Fig. 9.24 (solid line). The

fixed-free square beam tip receptance, h2b2b, is also displayed (dotted line). We see

a first bending natural frequency of 4,507.6 Hz for the free-free beam. The fixed-

free beam has a first bending frequency of 1,022.5 Hz.

A ¼ s2 (9.73)

I ¼ s4

12
(9.74)

The application of Eq. 9.65 to this scenario using the code provided in MATLAB®

MOJO 9.3 gives Fig. 9.25, which shows H11 for the assembly. We see two modes

within the 1,500 Hz frequency range: one at 1,045.2 Hz, near the original fixed-free

response and a second more flexible mode at 680.9 Hz due to the now coupled

cylinder. Because the prismatic beam is much stiffer than the cylinder, it appears to
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serve as a nearly rigid support for the cylinder. This may lead us to believe that

approximating the assembly as a cylinder clamped to a wall is adequate. However,

let’s investigate what happens if we modify the prismatic beam to reduce its first

bending frequency to a value near the fixed-free cylinder’s first bending frequency.
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Fig. 9.24 Free-free receptance, h11, for 10 mm diameter by 100 mm long steel cylinder (solid line)
and fixed-free receptance, h2b2b, for 50mm square by 200mm long steel prismatic beam (dotted line)
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Fig. 9.25 Assembly displacement-to-force tip receptance H11 for the rigidly coupled cylinder and

prismatic beam shown in Fig. 9.15
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MATLAB® MOJO 9.3 
% matlab_mojo_9_3.m

clc
clear all
close all

% Define free-free cylinder receptances
w = (1:0.1:5000)*2*pi;      % frequency, rad/s
E = 200e9;                  % elastic modulus, N/m^2
d = 10e-3;                  % diameter, m
L = 100e-3;                 % length, m
I = pi*d^4/64;              % 2nd moment of area, m^4
rho = 7800;                 % density, kg/m^3
A = pi*d^2/4;               % cross sectional area, m^2
eta = 0.01;                 % solid damping factor
EI = E*I*(1+1i*eta);        % complex stiffness, N-m^2
lambda = (w.^2*rho*A/EI).^0.25;
c1 = cos(lambda*L).*sinh(lambda*L) - sin(lambda*L).*cosh(lambda*L);
c2 = sin(lambda*L).*sinh(lambda*L);
c3 = sin(lambda*L) - sinh(lambda*L);
c4 = cos(lambda*L) - cosh(lambda*L);
c5 = cos(lambda*L).*sinh(lambda*L) + sin(lambda*L).*cosh(lambda*L);
c6 = sin(lambda*L) + sinh(lambda*L);
c7 = EI*(cos(lambda*L).*cosh(lambda*L)-1);
c8 = EI*(cos(lambda*L).*cosh(lambda*L)+1);

h11 = -c1./(lambda.^3.*c7);
l11 = c2./(lambda.^2.*c7);
n11 = l11;
p11 = c5./(lambda.*c7);

h2a2a = -c1./(lambda.^3.*c7);
l2a2a = -c2./(lambda.^2.*c7);
n2a2a = l2a2a;
p2a2a = c5./(lambda.*c7);

h12a = c3./(lambda.^3.*c7);
l12a = -c4./(lambda.^2.*c7);
n12a = c4./(lambda.^2.*c7);
p12a = c6./(lambda.*c7);

h2a1 = h12a;
l2a1 = n12a;
n2a1 = l12a;
p2a1 = p12a;

% Define fixed-free prismatic beam receptances
E = 200e9;                  % elastic modulus, N/m^2
s = 50e-3;                  % square side, m
L = 200e-3;                 % length, m
I = s^4/12;                 % 2nd moment of area, m^4
rho = 7800;                 % density, kg/m^3
A = s^2;                    % cross sectional area, m^2
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eta = 0.01;                 % solid damping factor
EI = E*I*(1+1i*eta);        % complex stiffness, N-m^2
lambda = (w.^2*rho*A/EI).^0.25;
c1 = cos(lambda*L).*sinh(lambda*L) - sin(lambda*L).*cosh(lambda*L);
c2 = sin(lambda*L).*sinh(lambda*L);
c3 = sin(lambda*L) - sinh(lambda*L);
c4 = cos(lambda*L) - cosh(lambda*L);
c5 = cos(lambda*L).*sinh(lambda*L) + sin(lambda*L).*cosh(lambda*L);
c6 = sin(lambda*L) + sinh(lambda*L);
c7 = EI*(cos(lambda*L).*cosh(lambda*L)-1);
c8 = EI*(cos(lambda*L).*cosh(lambda*L)+1);
h2b2b = -c1./(lambda.^3.*c8);
l2b2b = c2./(lambda.^2.*c8);
n2b2b = l2b2b;
p2b2b = c5./(lambda.*c8);

% Calculate assembly receptances
for cnt = 1:length(w)
    % Define generalized receptance matrices
    % Free-free cylinder
    R11 = [h11(cnt) l11(cnt); n11(cnt) p11(cnt)];
    R12a = [h12a(cnt) l12a(cnt); n12a(cnt) p12a(cnt)];
    R2a2a = [h2a2a(cnt) l2a2a(cnt); n2a2a(cnt) p2a2a(cnt)];
    R2a1 = [h2a1(cnt) l2a1(cnt); n2a1(cnt) p2a1(cnt)];

    
    % Prismatic beam
    R2b2b = [h2b2b(cnt) l2b2b(cnt); n2b2b(cnt) p2b2b(cnt)];

    
    % Generalized assembly receptance matrix
    G11 = R11 - R12a/(R2a2a + R2b2b)*R2a1;

    
    % Individual terms in G11
    H11(cnt) = G11(1,1);
    L11(cnt) = G11(1,2);
    N11(cnt) = G11(2,1);
    P11(cnt) = G11(2,2);
end

figure(1)
subplot(211)
plot(w/2/pi, real(h11), 'k', w/2/pi, real(h2b2b), 'k:')
ylim([-5e-6 5e-6])
set(gca,'FontSize', 14)
ylabel('Real (m/N)')
subplot(212)
plot(w/2/pi, imag(h11), 'k', w/2/pi, imag(h2b2b), 'k:')
ylim([-9e-6 9e-7])
set(gca,'FontSize', 14)
xlabel('Frequency (Hz)')
ylabel('Imag (m/N)')

figure(2)
subplot(211)
plot(w/2/pi, real(H11), 'k')
axis([0 1500 -1.8e-4 1.8e-4])
set(gca,'FontSize', 14)
ylabel('Real (m/N)')
subplot(212)
plot(w/2/pi, imag(H11), 'k')
axis([0 1500 -3.4e-4 3.4e-5])
set(gca,'FontSize', 14)
xlabel('Frequency (Hz)')
ylabel('Imag (m/N)')
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Figure 9.26 displays h11 for the free-free cylinder (solid line), as well as h2b2b for
a longer (250 mm) fixed-free prismatic beam (dotted line). The cylinder’s first

bending natural frequency remains at 4,507.6 Hz for the free-free boundary

conditions. However, the first bending frequency for the extended fixed-free

beam is reduced to 654.4 Hz. Figure 9.27 showsH11 for the cylinder rigidly coupled
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Fig. 9.26 Free-free receptance, h11, for 10 mm diameter by 100 mm long steel cylinder (solid
line) and clamped-free receptance, h2b2b, for 50 mm square by 250 mm long steel prismatic beam

(dotted line)
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Fig. 9.27 The displacement-to-force tip receptance,H11, for rigid coupling of the 10 mm diameter

by 100 mm long cylinder to the 50 mm square by 250 mm long prismatic beam is displayed
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to the 50 mm square by 250 mm long prismatic beam. The response is now quite

different than the assembly receptance shown in Fig. 9.25 for the 200 mm long

prismatic beam. Even though the cylinder is coupled to a more flexible base

(i.e., a longer fixed-free beam), the assembly response has a smaller peak magni-

tude. The minimum imaginary value for the new assembly is �1:865� 10�4m=N,
while the corresponding value for the shorter (and stiffer) prismatic beam assembly

was �3:222� 10�4 m=N; this represents a 42% compliance3 reduction. The com-

pliance reduction, or, equivalently, the stiffness increase, is due to interaction

between the two beams in a manner analogous to the dynamic absorber we

discussed in Sect. 5.4. When the fixed-free prismatic beam’s natural frequency is

near the coupled cylinder’s natural frequency, some energy is able to “pass

through” the cylinder and excite the stiffer base. The result is that the energy is

more equally partitioned between the two modes and the assembly response

appears stiffer (Duncan et al. 2005). An electrical equivalent is the impedance

matching strategy used at cable connections. For example, it is common to use

50 O terminations at all connections to encourage signal transmission and avoid

reflection.

9.7.3 Comparison Between Model and BEP Measurement

In Sect. 8.6.1, we compared an Euler–Bernoulli fixed-free beam prediction to a

measurement completed on the BEP. The impact test carried out on the BEP is

described in Sect. 7.4, where the 12.7 mm diameter cantilevered steel rod was

extended 130 mm beyond the base (see Fig. 7.20). Now let’s model the extended

portion of the steel rod as a free-free beam and couple it to a rigid support (wall) to

predict the fixed-free response of the assembly. We can then compare the prediction

to the measurement result (see Fig. 7.21).

For the 12.7 mm diameter rod, the second moment of area is:

I ¼ pd4

64
¼ p 0:0127ð Þ4

64
¼ 1:277� 10�9 m4

and the cross-sectional area, A, is:

A ¼ pd2

4
¼ p 0:0127ð Þ2

4
¼ 1:267� 10�4 m2:

For the steel rod, let’s use r ¼ 7;800 kg=m3, E ¼ 200 GPa, and � ¼ 0:002. The
coupling proceeds as detailed in MATLAB® MOJO 9.2, but with the new rod

dimensions. Figure 9.28 shows H11 for the rod rigidly coupled to the wall. We

3Compliance is the inverse of stiffness.
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observe that the fixed-free prediction has a natural frequency that is too high and the

damping is too low. As discussed in Sect. 8.6.1, the split-clamp used to secure the

rod in the BEP holder does not provide an ideal fixed boundary condition. In order

to incorporate the flexibility and damping in the clamping interface into the

receptance coupling model, we can modify Eq. 9.65 using the complex stiffness

matrix defined in Sect. 9.6:

~k0
� � ¼ kxf þ iocxf kyf þ iocyf

kxm þ iocxm kym þ iocym


 �
:

The modified Eq. 9.65 used to predict H11 is:

G11 ¼ R11 � R12a R2a2a þ R2b2b þ ~k0
� ��1

� ��1

R2a1 (9.75)

If the complex stiffness matrix is specified to be:

~k0
� � ¼ 3� 106 þ io70 3:5� 105 þ io20

3:5� 105 þ io20 2� 103 þ io5


 �
;

the result displayed in Fig. 9.29 is obtained. We see that the additional flexibility

and damping at the connection between the free-free rod and wall improves the

agreement between the model and measurement. The code used to carry out this

receptance coupling exercise is provided in MATLAB® MOJO 9.4.
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Fig. 9.28 Comparison between the free-free boundary condition rod rigidly coupled to a wall

(solid line) and the BEP measurement (dotted line)
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MATLAB
® MOJO 9.4 

% matlab_mojo_9_4.m

clc
clear all
close all

% Define free-free cylinder receptances
w = (1:0.1:1000)*2*pi;      % frequency, rad/s
E = 200e9;                  % elastic modulus, N/m^2
d = 12.7e-3;                % diameter, m
L = 130e-3;                 % length, m
I = pi*d^4/64;              % 2nd moment of area, m^4
rho = 7800;                 % density, kg/m^3
A = pi*d^2/4;               % cross sectional area, m^2
eta = 0.002;                % solid damping factor
EI = E*I*(1+1i*eta);        % complex stiffness, N-m^2
lambda = (w.^2*rho*A/EI).^0.25;
c1 = cos(lambda*L).*sinh(lambda*L) - sin(lambda*L).*cosh(lambda*L);
c2 = sin(lambda*L).*sinh(lambda*L);
c3 = sin(lambda*L) - sinh(lambda*L);
c4 = cos(lambda*L) - cosh(lambda*L);
c5 = cos(lambda*L).*sinh(lambda*L) + sin(lambda*L).*cosh(lambda*L);
c6 = sin(lambda*L) + sinh(lambda*L);
c7 = EI*(cos(lambda*L).*cosh(lambda*L)-1);
c8 = EI*(cos(lambda*L).*cosh(lambda*L)+1);

h11 = -c1./(lambda.^3.*c7);
l11 = c2./(lambda.^2.*c7);
n11 = l11;
p11 = c5./(lambda.*c7);
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Fig. 9.29 Comparison between the free-free boundary condition rod coupled to a wall using a

flexible-damped connection (solid line) and the BEP measurement (dotted line)
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% Calculate assembly receptances
for cnt = 1:length(w)
    % Define generalized receptance matrices
    % Free-free cylinder
    R11 = [h11(cnt) l11(cnt); n11(cnt) p11(cnt)];
    R12a = [h12a(cnt) l12a(cnt); n12a(cnt) p12a(cnt )];
    R2a2a = [h2a2a(cnt) l2a2a(cnt); n2a2a(cnt) p2a2 a(cnt)];
    R2a1 = [h2a1(cnt) l2a1(cnt); n2a1(cnt) p2a1(cnt )];

    
    % Rigid wall
    R2b2b = [h2b2b(cnt) l2b2b(cnt); n2b2b(cnt) p2b2 b(cnt)];

    
    % Complex connection stiffness
    k = [3e6 + 1i*w(cnt)*70 3.5e5 + 1i*w(cnt)*20; 3.5e5 + 1i*w(cnt)*20 2e3 + 
1i*w(cnt)*5];
    invk = inv(k);

    
    % Generalized assembly receptance matrix
    G11 = R11 - R12a/(R2a2a + R2b2b + invk)*R2a1;

       
    % Individual terms in G11
    H11(cnt) = G11(1,1);
    L11(cnt) = G11(1,2);
    N11(cnt) = G11(2,1);
    P11(cnt) = G11(2,2);
end

figure(1)
subplot(211)
plot(w/2/pi, real(H11), 'k')
axis([0 1000 -5e-5 5e-5])
set(gca,'FontSize', 14)
ylabel('Real (m/N)')
subplot(212)
plot(w/2/pi, imag(H11), 'k')
axis([0 1000 -9e-5 1e-5])
set(gca,'FontSize', 14)
xlabel('Frequency (Hz)')
ylabel('Imag (m/N)')

h2a2a = -c1./(lambda.^3.*c7);
l2a2a = -c2./(lambda.^2.*c7);
n2a2a = l2a2a;
p2a2a = c5./(lambda.*c7);

h12a = c3./(lambda.^3.*c7);
l12a = -c4./(lambda.^2.*c7);
n12a = c4./(lambda.^2.*c7);
p12a = c6./(lambda.*c7);

h2a1 = h12a;
l2a1 = n12a;
n2a1 = l12a;
p2a1 = p12a;

% Define wall receptances
h2b2b = zeros(1, length(w));
l2b2b = zeros(1, length(w));
n2b2b = zeros(1, length(w));
p2b2b = zeros(1, length(w));
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IN A NUTSHELL The ability to mathematically predict dynamic

system behavior, to experimentally measure dynamic system

behavior, and to combine measurements and computations is a

powerful tool. The objective of this book is the description and

demonstration of these techniques and illustration of their wide

application range.

Chapter Summary

• The vibrating behavior of structures can be described using discrete models,

continuous beam models, or measurements.

• The responses of individual components, or substructures, can be combined

using receptance coupling to predict the assembly’s response.

• The coupling between components can be rigid, flexible, or flexible with

damping.

• The receptance coupling approach can incorporate not only transverse

deflections due to forces, but also rotations and bending couples.
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Exercises

1. Determine the direct frequency response function, X2

F2
, for the two degree of

freedom system shown in Fig. P9.1 using receptance coupling. Express your

final result as a function of m, c, k, and the excitation frequency, o. You may

assume a harmonic forcing function, F2e
iot, is applied to coordinate X2.

X1 X2 

m m
c

k k
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Fig. P9.1 Two degree of freedom assembly

2. Determine the direct frequency-response function, X1

F1
, for the two degree of

freedom system shown in Fig. P9.2 using receptance coupling. Express your

final result as a function of m, c, k, and the excitation frequency, o. You may

assume a harmonic forcing function, F1e
iot, is applied to coordinate X1.

x1 x2 

II I

k

c

m 2m

X1 X2

m 2m

2k

III

k

c c

Fig. P9.2 Flexible damped coupling of mass (I) to spring–mass–damper (II) to form the two

degree of freedom assembly III

3. Use receptance coupling to rigidly join two free-free beams and find the free-

free assembly’s displacement-to-force tip receptance. Both steel cylinders are

described by the following parameters: 12.7 mm diameter, 100 mm length,

200 GPa elastic modulus, and 7,800 kg/m3 density. Assume a solid damping

factor of 0.0015. Once you have determined the assembly response, verify your

result against the displacement-to-force tip receptance for a 12.7 mm diameter,

200 mm long free-free steel cylinder with the same material properties. Select a

frequency range that encompasses the first three bending modes and display

your results as the magnitude (in m/N) vs. frequency (in Hz) using a semi-

logarithmic scale.

4. Plot the displacement-to-force tip receptance for a sintered carbide cylinder

with free-free boundary conditions. The beam is described by the following

parameters: 19 mm diameter, 150 mm length, 550 GPa elastic modulus, and

15,000 kg/m3 density. Assume a solid damping factor of 0.002. Select a

frequency range that encompasses the first three bending modes and display
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your results as magnitude (m/N) versus frequency (Hz) in a semi-logarithmic

format.

5. Determine the fixed-free displacement-to-force tip receptance for a sintered

carbide cylinder by coupling the free-free receptances to a rigid wall (with zero

receptances). The beam is described by the following parameters: 19 mm

diameter, 150 mm length, 550 GPa elastic modulus, and 15,000 kg/m3 density.

Assume a solid damping factor of 0.002. Select a frequency range that

encompasses the first two bending modes and display your results as magnitude

(m/N) versus frequency (Hz) in a semi-logarithmic format. Verify your result

by comparing it to the displacement-to-force tip receptance for a fixed-free

beam with the same dimensions and material properties.

6. For a rigid coupling between two component coordinates x1a and x1b, the
compatibility condition is _____________.

7. For a flexible coupling (spring stiffness k) between two component coordinates

x1a and x1b, the compatibility condition is _____________. An external force is

applied to the assembly at coordinate X1a.

8. For a flexible-damped coupling (spring stiffness k and damping coefficient c)
between two component coordinates x1a and x1b, the compatibility condition is

_____________. An external force is applied to the assembly at coordinate X1a.

9. What are the units for the rotation-to-couple receptance, pij, used to describe

the transverse vibration of beams?

10. What are the (identical) units for the displacement-to-couple, lij, and rotation-

to-force, nij, receptances used to describe the transverse vibration of beams?
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Appendix A

Beam Experimental Platform

The beam experimental platform (BEP) is used throughout the text to demonstrate

various concepts in mechanical vibrations. The BEP is composed of a base plate, a

holder, and a rod; see Fig. A1. The base plate and holder are aluminum and can be

machined using the dimensions provided in Fig. A2. The rod is a 12.7 mm diameter,

152.5 mm long high-speed steel tool blank.

Fig. A1 BEP components

T.L. Schmitz and K.S. Smith, Mechanical Vibrations: Modeling and Measurement,
DOI 10.1007/978-1-4614-0460-6, # Springer Science+Business Media, LLC 2012
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Fig. A2 BEP dimensions
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Appendix B

Orthogonality of Eigenvectors

The orthogonality of eigenvectors with respect to the system mass and stiffness

matrices is the basis for modal analysis. In general, we can say that two vectors are

perpendicular if their scalar, or dot, product is zero. Consider the two vectors:

U½ � ¼ u11
u21

� �
and V½ � ¼ v11

v21

� �
: (B1)

Their dot product is:

U½ � � V½ � ¼ U½ �T V½ � ¼ u11 u21f g v11
v21

� �
¼ u11 � v11 þ u21 � v21: (B2)

This product is zero if the vectors are perpendicular. Orthogonality can be

considered a generalization of the concept of perpendicularity.

From Chap. 4, we have seen that we can write the matrix form of the system

equations of motion m½ �s2 þ k½ �ð Þ ~X
� �

est ¼ 0f g if we assume harmonic vibration.

We used the characteristic equation, m½ �s2 þ k½ ��� �� ¼ 0, to find the eigenvalues, s1
2

and s2
2. We then substituted the eigenvalues into either of the linearly dependent

equations of motion to find the eigenvectors, or mode shapes. Using s1
2 ¼ �on1

2,

we can write:

� m½ �on1
2 þ k½ �� �

c1f g ¼ 0f g; (B3)

where c1 is the corresponding mode shape. Eq. B3 can be expanded to:

� on1
2 m½ � c1f g þ k½ � c1f g ¼ 0f g: (B4)

Premultiplying Eq. B4 by the transpose of the second mode shape c2, which

corresponds to vibration at on2, yields:
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� on1
2 c2f gT m½ � c1f g þ c2f gT k½ � c1f g ¼ 0: (B5)

Performing the transpose operation on Eq. B5 gives:

� on1
2 c1f gT m½ � c2f g þ c1f gT k½ � c2f g ¼ 0; (B6)

where the transpose properties A½ � B½ �ð ÞT ¼ B½ �T A½ �T and A½ �T
	 
T

¼ A½ � (using

matrices of appropriate dimensions) have been applied.

Completing the same operations using s2
2 ¼ �on2

2 gives:

� on2
2 c1f gT m½ � c2f g þ c1f gT k½ � c2f g ¼ 0: (B7)

Taking the difference of Eqs. B6 and B7 yields:

on2
2 � on1

2
� �

c1f gT m½ � c2f g ¼ 0: (B8)

Provided on2
2 6¼ on1

2, then c1f gT m½ � c2f g ¼ 0. Substituting this result into

either Eq. B6 or Eq. B7 gives c1f gT k½ � c2f g ¼ 0. Collecting these results, we

obtain the orthogonality conditions shown in Eqs. B9 through B12.

c1f gT m½ � c2f g ¼ 0

c2f gT m½ � c1f g ¼ 0
(B9)

c1f gT m½ � c1f g ¼ mq1

c2f gT m½ � c2f g ¼ mq2

(B10)

The products in Eq. B10 are not necessarily zero.

c1f gT k½ � c2f g ¼ 0

c2f gT k½ � c1f g ¼ 0
(B11)

c1f gT k½ � c1f g ¼ kq1

c2f gT k½ � c2f g ¼ kq2
(B12)

The products in Eq. B12 are not necessarily zero. Using the modal matrix,

P½ � ¼ c1 c2½ �, and the orthogonality conditions we obtain the diagonalized

modal mass and stiffness matrices:

P½ �T m½ � P½ � ¼ c1f gT m½ � c1f g c1f gT m½ � c2f g
c2f gT m½ � c1f g c2f gT m½ � c2f g

� �
¼ mq1 0

0 mq2

� �
¼ mq

 �
(B13)
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and

P½ �T k½ � P½ � ¼ c1f gT k½ � c1f g c1f gT k½ � c2f g
c2f gT k½ � c1f g c2f gT k½ � c2f g

� �
¼ kq1 0

0 kq2

� �
¼ kq

 �
: (B14)

These diagonal modal mass and stiffness matrices uncouple the equations of

motion and enable the solution of independent single degree of freedom systems in

modal coordinates. The individual modal contributions can then be transformed

back into local (model) coordinates as discussed in Chap. 4.
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Index

A

Accelerance, 250

Acceleration, 16, 17

Accelerometer

acceleration coefficient vs. frequency
ratio, 259

bandwidth, 258–259

free body diagram, 257

free vibration measurement, 75

piezoelectric material, 255

spring–mass–damper system, 255, 256

Advanced receptance coupling

bending couples, 343

cross receptance matrix, 346–347

direct and cross receptances, 344

frequency-dependent stiffness matrix, 348

generalized displacement and rotation, 345

generalized force and couple, 345

generalized receptance matrix, 344–345

solid cylinder-prismatic cantilever beam

assembly, 343

Aircraft wing, 67, 72

Analog-to-digital converter (ADC), 250

Anti-aliasing filter, 266

Archimedes, 145

Argand diagram, 10, 15–17, 19, 29, 65,

66, 99–101, 105

Assembly modeling techniques

complex matrix inversion, 338

MATLAB®MOJO 9.1, 341–342

modal analysis, 337–338

receptance coupling, 338–340

spring–mass–damper systems, 336

Asymptotically stable decaying responses, 64

Automobile suspension model

force balance, mass determination, 230–232

stiffness, 233–234

Axial vibration

harmonic axial force, free-free beam, 310

MATLAB®MOJO 8.3, 313

semi-logarithmic plot, 311, 312

B

Base motion

accelerometer, 257

automobile response, 116–117

automobile suspension, 115–116

single degree of freedom

spring–mass–damper, 113–114

Beam bending

area moment of inertia, 283

boundary conditions, 281–282

continuous models, 280

coordinate definitions, 280

loading condition, 280, 282

MATLAB®MOJO 8.1, 283

Beam experimental platform (BEP), 75

impact testing, 268–269

mode shape measurement, 217

BEP. See Beam experimental platform (BEP)

Boundary condition, 133

C

Capacitance gage, 253

Capacitance probe, 252–253

Characteristic equation, 28, 130

Chatter, 5

Coherence, 250

Complex conjugates, 30

Complex matrix inversion, 169–175

Compliance, 250

Contact transducer. See Accelerometer
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Continuous beam modeling

axial vibration

harmonic axial force, free-free beam,

310

MATLAB®MOJO 8.3, 313

semi-logarithmic plot, 311, 312

beam bending

boundary conditions, 281–282

continuous models, 280

coordinate definitions, 280

loading condition, 280, 282

MATLAB®MOJO 8.1, 283

natural frequency uncertainty, 307–308

rotation FRF

boundary conditions, 301, 303, 304

harmonic bending couple, 301–302

transverse deflection and rotation

vibration, coordinates for, 301

solid damping

anti-resonant frequencies, 298

bending modes, 297

complex modulus, 294

differential equation of motion, 295

Euler–Bernoulli beam natural

frequency, 297–298

MATLAB®MOJO 8.2, 299

second moment of area, 299–300

semi-logarithmic plot, direct FRF, 298

steel machinist’s scale, 296

Timoshenko beam model, 314

torsion vibration

equation of motion, 308

external torque, free-free beam, 309–310

transverse vibration equation of motion,

284–285

Continuous models, 280

Convolution integral, 120

Cosh function, 286

Coulomb damping, 47

Covariance, 63

Cramer’s rule, 288–289

Critically damped system, 49

Cross frequency response function (FRF),

170, 204–207

Curve fitting, 217

D

d’Alembert’s principle, 27

Damped harmonic oscillator, 47–64

Damped natural frequency, 50

Damped system behavior, 48–49

Damping, 6–7

Damping estimate uncertainty, 63–64

Damping ratio, 49

Degrees of freedom

definition, 7–8

multiple

cutting-tool–holder–spindle–machine

structure, 214, 215

MATLAB® MOJO 6.1, 214, 216

single

forced vibration, 83–121

free vibration, 25–77

FRF, 200, 201, 210

modal damping coefficient, 201

two

forced vibration, 167–192

free vibration, 127–159

model development, 202–203

Determinant, 56

Diagonalization, 149

Differential equation of harmonic motion, 17, 39

Direct frequency response function, 170,

204–207

Displacement transmissibility, 115

Divergent instability, 69–74

Duffing spring, 45

Dynamic absorber, 184–192

Dynamic flexibility, 95

Dynamic signal analyzer, 249

E

Eigensolution, 129–139

Eigenvalue, 129–131

Eigenvalue problem, 129

Eigenvector

definition, 129

orthogonality, 369–371

Elastic modulus, 43, 47

Energy-based approach, 35–41

Equations of motion

forced vibration, 83–84, 167–169

free vibration, 25–35, 127–129

Equivalent springs, 41–43

Euler–Bernoulli beam theory, 280

Euler integration, 67, 260

Euler’s formula, 18

Even function, 18

F

Finite element representation, 280

Fixed-free beam

bending mode, 221
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FRF

boundary condition, 287–288

Cramer’s rule, 288–289

direct and cross, 290

harmonic force, 286, 287

mode shape calculation, constants, 221

Flutter. See Self-excited vibration

Flutter instability, 65–69

Forced vibration

natural frequency, 3

single degree of freedom

base motion, 113–117

equation of motion, 83–84

frequency response function, 84–108

impulse response, 117–120

rotating unbalance, 108–113

two degree of freedom

complex matrix inversion, 169–175

dynamic absorber, 184–192

equations of motion, 167–169

modal analysis, 176–184

Force input

fixed frequency sine wave, 250

impact hammer, 251, 252

impulse and random signal, 250

shaker, 250–251

Fourier, Jean Baptiste Joseph, 11

Fourier series, 11

Free body diagram, 27

Free-free beam

bending mode, 218, 219

fixed-free beam, 355–360

FRF

boundary conditions, 291–292

cross, 294

direct, 293

harmonic force, 290, 291

mode shape calculation, constants, 218

rigid support, 349–355

Free vibration

exponentially decaying, periodic

response, 2–3

single degree of freedom

damped harmonic oscillator, 47–64

energy-based approach, 35–41

equation of motion, 25–35

equivalent springs, 41–43

measurement, 75–76

nonlinear springs, 45–46

torsional systems, 43–45

unstable behavior, 64–74

two degree of freedom

eigensolution, 129–139

equations of motion, 127–129

modal analysis, 145–159

time-domain solution, 139–145

Frequency domain, 84

Frequency response function (FRF), 84–108

cross type, 170

direct type, 170

measurement, 249–250

mode shape measurement, 204–207

receptance coupling, 323

rotation

boundary conditions, 301, 303, 304

harmonic bending couple, 301–302

transverse deflection and rotation

vibration, coordinates for, 301

single degree of freedom, 200, 201, 210

transverse vibration

fixed-free beam, 286–290, 304–305

free-free beam, 290–294, 305–307

sinh and cosh functions, 286

FRF. See Frequency response function (FRF)

G

Gaussian distribution, 64, 308

Gibbs’ phenomenon, 12

Gravitational potential energy, 38, 40

Gravity force, 70, 74

H

Hammer, 33

Harmonic motion, 8

Hertz (Hz), 15

Hooke’s law, 25

Hyperbolic cosine. See Cosh function

Hyperbolic sine. See Sinh function

I

Imaginary axis, 17

Impact hammer, 251, 252

Impact testing

aliasing, 265

BEP, 268–269

definition, 251

force impacts, 266–267

force profile, 261

free-free beam measurement, 304–305

MATLAB®MOJO 7.1, 263

Nyquist and sampling frequencies, 265

single degree of freedom

spring–mass–damper system, 260
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Impact testing (cont.)
time-domain response, 262, 264

time step, 261

Impulse response, 117–121

Impulse response function, 119

Inertance, 250

Initial conditions, 29

Inverted pendulum, 69

K

Kinetic energy, 35

L

Laplace domain, 85

Laser vibrometer, 254

Level of confidence, 64

Linear algebra, 56

Linearized pendulum

free body diagram, 228

mass moment of inertia, 228

mass term, 229

stiffness term, 230

Linearly dependent equation, 134

Linear variable differential transformer

(LVDT), 63

Logarithmic decrement, 61

Lumped parameter model, 25

M

Maclaurin series, 18

Magnitude, 87

Marginally stable behavior, 65

Mass moment of inertia, 37, 44

Matrix inversion, 55

Matrix multiplication, 150

Measurement techniques

force input

fixed frequency sine wave, 250

impact hammer, 251, 252

impulse and random signal, 250

shaker, 250–251

frequency response function (FRF), 249–250

impact testing

aliasing, 265

BEP, 268–269

definition, 251

force impacts, 266–267

force profile, 261

MATLAB®MOJO 7.1, 263

Nyquist and sampling frequencies, 265

single degree of freedom

spring–mass–damper system, 260

time-domain response, 262, 264

time step, 261

modal truncation

definition, 269

direct FRF, 270–272

MATLAB®MOJO 7.2, 272–273

vibration (see Vibration measurement)

Mechanical vibrations. See Vibrations
Mobility, 250

Modal analysis, 145–159

automobile suspension model

force balance, mass determination,

230–232

mass determination, 231

stiffness, 233–234

backward problem, 199, 214

cross and direct FRF, 204–207

damping and stiffness matrices

determination

automobile suspension model, 230–234

automobile’s suspension response, 224

forms, 227

linearized pendulum, 228–230

eigenvalues and eigenvectors, 208–209

forced vibration problem solution, two

degree of freedom, 176–184

linearized pendulum

free body diagram, 228

mass moment of inertia, 228

mass term, 229

stiffness term, 230

local coordinates, 210–211

mass determination

automobile suspension model, 230–234

automobile’s suspension response, 224

force balance, 225–226

linearized pendulum, 228–230

modal matrix, 204, 209–210

mode shape measurement

bending mode, 218, 219, 221

direct and cross FRF, 219–220, 222–223

fixed-free beam, 221

free-free beam, 218

rotational rigid body mode, 218

translational rigid body mode, 217

peak picking (see Peak picking)

proportional damping, 204, 207–208

solution for system of coupled differential

equations, 169

two degree of freedom chain-type model,

207, 208
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Modal coordinates, 145

Modal damping ratio, 150

Modal truncation

definition, 269

direct FRF, 270–272

MATLAB®MOJO 7.2, 272–273

Mode shape, 8, 129

N

Natural frequency, 28

Natural frequency uncertainty, 307–308

Noncontact transducers

capacitance probe, 252–253

laser vibrometer, 254

Nonlinear springs, 45–46

Normalized mode shapes, 133

Nyquist frequency, 265

Nyquist–Shannon sampling theorem, 265

O

Odd function, 12

Overdamped system, 49

P

Parallel springs, 41–42

Peak picking

degree of freedom

multiple, 214–216

single, 200–202

two, 202–203

frequencies and heights, 211, 212

Periodic motion, 8–20

Phase, 16, 87

Pink noise, 250

Poisson effects, 310

Poisson’s ratio, 43

Polar moment of inertia, 43

Position, 16, 17

Potential energy, 35

Proportional damping, 147

Q

Quality factor (Q), 89

R

Real axis, 17

Receptance, 250

Receptance coupling

advanced

bending couples, 343

cross receptance matrix, 346–347

direct and cross receptances, 344

frequency-dependent stiffness

matrix, 348

generalized displacement and

rotation, 345

generalized force and couple, 345

generalized receptance matrix, 344–345

solid cylinder-prismatic cantilever

beam assembly, 343

assembly modeling techniques

complex matrix inversion, 338

M ATLAB®MOJO 9.1, 341–342

modal analysis, 337–338

receptance coupling, 338–340

spring–mass–damper systems, 336

free-free beam

fixed-free beam, 355–360

rigid support, 349–355

M ATLAB®MOJO 9.4, 362–636

model vs. BEP measurement, 360–362

two-component flexible coupling, 326–334

two-component flexible-damped coupling

direct and cross receptances, 335

viscous damping, 334

two-component rigid coupling

assembly response, 324, 325

compatibility condition, 322, 323

components/substructures, 321–322

direct and cross receptances, 325–326

equilibrium condition, 322, 323

FRF, 323

Reciprocity, 171

Regeneration of waviness, 5

Resonance, 3, 87

Rigid body motion, 47

Rotating unbalance, 3, 108–113

Rumble strips, 117

S

Sampling frequency, 265

Self-excited vibration, 4–6

Series springs, 42

Shaker, 250–251

Shape factor, 314

Shear force, 281

Shear modulus, 43

Sine sweep test, 250
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Sinh function, 286

Slinky®, 88

Solid damping, 47

anti-resonant frequencies, 298

bending modes, 297

complex modulus, 294

differential equation of motion, 295

Euler–Bernoulli beam natural frequency,

297–298

MATLAB®MOJO 8.2, 299

second moment of area, 299–300

semi-logarithmic plot, direct FRF, 298

steel machinist’s scale, 296

Square matrix, 146

Static flexibility, 95

Steady-state solution, 84

Stiffness matrix, 234

Stinger, 251

Superposition, 167

Symmetric matrices, 136

T

Time domain solution, two degree of freedom

free vibration, 139–145

Time period (of vibration), 9, 34, 50, 53

Time step, 67

Timoshenko beam model, 314

Torsional system, 43

Torsion vibration

equation of motion, 308

external torque, free-free beam, 309–310

Transfer function, 85

Transient solution, 84

Transpose operation, 141

Transverse vibration equation of motion,

284–285

Trivial solution, 28, 48, 130

Two-component flexible-damped coupling

direct and cross receptances, 335

viscous damping, 334

Two-component rigid coupling

assembly response, 324, 325

compatibility condition, 322, 323

components/substructures, 321–322

direct and cross receptances, 325–326

equilibrium condition, 322, 323

FRF, 323

U

Uncertainty, 63

Underdamped system, 49–60

Unstable behavior, 64–74

V

Variance, 307

Vector, 52, 53

Velocity, 16, 17

Vibration measurement

accelerometer

acceleration coefficient vs. frequency
ratio, 259

bandwidth, 258–259

free body diagram, 257

piezoelectric material, 255

spring–mass–damper system, 255, 256

capacitance probe, 252–253

laser vibrometer, 254

single degree of freedom, 75–76

Vibrations

classification, 6

forced vibration, 3 (see also Forced

vibration)

free vibration, 2–3 (see also Free

vibration)

self-excited vibration, 4–6

damping, 6–7

measurement (see Vibration measurement)

modeling, 7–8

periodic motion

Argand diagram, 10, 15–17

Euler’s formula, 18

sine function, 9

square wave, 12–13

square wave and Fourier series

approximations, 12–13

sum of two sine functions, 11

two counter rotating unit vectors, 18–19

unit vector, 17–18

vector representation of vibration,

19–20

Viscous damping, 47

W

White noise, 250
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